I want to show that $R$ is Noetherian local ring and $S$ is Gorestein local ring s.t. $R=S/J$ and $f$ is an $R$-regular element, if for every $p\in\operatorname{Ass}_{S}(R),\operatorname{ht}_{S}(p)=\operatorname{ht}_{S}(J)$, then for every $p\in\operatorname{Ass}_{S}(R/f),\operatorname{ht}_{S}(p)=\operatorname{ht}_{S}(J)+1$.
But I am confused.
Let $R$ be a Cohen-Macaulay ring. Then for every ideal $I \subset R$, $p\in\operatorname{Ass}_{R}(R/I)$, $\operatorname{ht}(p)=\operatorname{ht}(I)$. Is this the unmixedness theorem?