0

How to prove that if $c$ divides $ab$ and $\operatorname{gcd}(a,c)=1$, then show that $c$ divides $b$.

that means if $c|ab$ and $(a,c)=1 \implies c|b$.

Hakim
  • 10,311
srimali
  • 75

1 Answers1

0

Hint. If $\gcd(a,c)=1$ then there exist integers $x,y$ such that $$ax+cy=1\ .$$ Now multiply both sides by $b$ and explain why $c$ is a factor of the left hand side.

David
  • 84,708
  • 9
  • 96
  • 166