Where $v_p(n)$ is called the $p$-adic valuation of $n$.
prove $v_p(n!)=\sum_{t=1}^\infty \left\lfloor \frac{n}{p^t} \right\rfloor$
so far i have that $v_p(n!) = v_p(n) + v_p(n-1) + \cdots + v_p(2) + v_p(1)$
and $$\sum_{t=1}^\infty \left\lfloor \frac{n}{p^t} \right\rfloor = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \cdots +\left\lfloor \frac{n}{p^r} \right\rfloor = p^{r-1} + p^{r-2} + \cdots + p + 1$$
where $p^r||n$
I don't really know where to go from here. Any suggestions would be great.