I'm trying to understand the geometry of the Cayley transform. Suppose I have a $3 \times 3$ rotation matrix $R$ (i.e an orthogonal matrix with determinant equal to $1$). Let's ignore the corner case where $-1$ is an eigenvalue of $R$ (in other words, we assume that the rotation angle is not $\pi$). Then, according to a result of Cayley, I can find a skew symmetric matrix $S$ such that $$ R = (I - S)(I + S)^{-1} $$ In other words, I can find two other transformations $A = I - S$ and $B= (I + S)^{-1}$ whose combined effect, when applied one after the other, is the same as the original rotation.
My question is:
Can we find some geometric interpretation of the transforms $S$ and $A$ and $B$, so that we can see how they combine to produce a rotation.
I know that a rotation can be written as a product of two reflections. Is that related to the Cayley decomposition $R = AB$? Are $A$ and $B$ reflections?
The 3-dimensional case is the only one that's of interest to me.
Edit: Some Progress
I made some progress on the algebra, but not the geometry. Suppose our matrix $R$ corresponds to a rotation through an angle $\theta$ around the unit vector $\mathbf{n} = (u,v,w)$. Let $t = \tan\tfrac12\theta$. Then I managed to show that the Cayley decomposition is given by $R = A \cdot B$, where $$ S = \left[ \begin{matrix} 0 & t w & -t v \\ -t w & 0 & t u \\ t v & -t u & 0 \end{matrix} \right] $$ $$ A = I - S = \left[ \begin{matrix} 1 & -t w & t v \\ t w & 1 & -t u \\ -t v & t u & 1 \end{matrix} \right] $$ $$ B = (I + S)^{-1} = \frac{1}{1+t^2} \left[ \begin{matrix} t^2 u^2+1 & t (t u v-w) & t (v+t u w) \\ t (t u v+w) & t^2 v^2+1 & t (t v w-u) \\ t (t u w-v) & t (u+t v w) & t^2 w^2+1 \end{matrix} \right] $$ We have $\det(A) = 1+ t^2$ and $\det(B) = 1/(1+t^2)$, so neither $A$ nor $B$ is a rotation or a reflection.
I still don't see the geometry of $A$ and $B$, though. That's the puzzle.