I have a similar question to Why can Bessel sequences be defined by the condition $\sum_{k=1}^{\infty}|\langle f,f_{k}\rangle|^{2}<\infty$?, where it was solved using Banach-Steinhaus.
A sequence $\{f_k\}_{k=1}^{\infty}$ is called a Bessel sequence in a Hilbert space $\mathscr{H}$, if $\sum_{k=1}^{\infty}|\langle f,f_k\rangle|^2 < \infty \, \forall f \in \mathscr{H}$.
Statement: Given a Bessel sequence use the close graphing theorem to show that $\sum_{k=1}^{\infty}|\langle f,f_k \rangle|^2 \leq B\|f\|^2$ where $B < \infty$
Attempted proof: Let $\{f_i\}_{i=1}^{\infty} \, \in \, \mathscr{H}$ where $\lim_{i\rightarrow \infty} f_i = f$ and define $T(f) = \{\langle f, f_n\rangle\} = \{F_n\}_{n=1}^{\infty}\, \in \, l_2$
Now for a fixed $m$ we have:
$|F_m - \langle f_i, f_m\rangle| \leq |\sum_{k=1}^{\infty}|F_k -\langle f_i,f_k\rangle|^2|^{\frac{1}{2}} = \|{F_k} - T(f_i)\|_2 \rightarrow 0 \, \mbox{as} \, i\rightarrow \infty$
hence
$\lim_{i\rightarrow \infty} \langle f_i, f_m\rangle = F_m$
So we have convergence hence we are closed and by the CGT
$\sum_{k=1}^{\infty}|\langle f,f_k \rangle|^2 \leq B\|h\|^2$ where $B < \infty$
Q.E.D.