Given $a_{ij}, b_j \in \Bbb R$, consider the following optimization problem:
$$\begin{array}{ll} \underset{x_1, x_2 \in \Bbb R}{\text{minimize}} & |x_1| + |x_2|\\ \text{subject to} & a_{11}x_1 + a_{12}x_2 = b_1\\ & a_{21}x_1 + a_{22}x_2 = b_2\end{array}$$
Can I solve this problem with linear programming methods? If so, how?