We can use a generalization of the Riemann-Lebesgue lemma that states that if $f(x)$ is a continuous function on $[a,b]$, where $0 \le a < b$, and $g(x)$ is a continuous $T$-periodic function on $[0, \infty)$, then $$\lim_{n \to \infty}\int_{a}^{b} f(x) g(nx) \, dx = \left(\frac{1}{T} \int_{0}^{T} g(x) \, dx \right) \left(\int_{a}^{b} f(x) \, dx \right).$$
A proof can be found in THIS PAPER.
The proof uses the fact that a primitive of $g(x)$ can be expressed as $$ \int_{0}^{x} g(t) \, dt = \frac{x}{T} \int_{0}^{T} g(t) \ dt + h(x),$$ where $h(x)$ is $T$-periodic function. (Lemma 2.2)
The regular Riemann-Lesbegue lemma is the case where the average value of $g(x)$ is $0$.
Applying the lemma to this particular integral, we get
$$ \lim_{x \to \infty} \int_{0}^{\pi} \frac{\sin t}{1+\cos^{2}(xt)} \ dt = \left( \frac{1}{\pi} \int_{0}^{\pi} \frac{1}{1+\cos^{2} t} \ dt \right) \left( \int_{0}^{\pi} \sin t \ dt \right). $$
The first integral can be evaluated by making the substitution $u = \tan t$.
This particular example actually appears in the paper, so I'll omit the details.
We end up with
$$ \lim_{x \to \infty} \int_{0}^{\pi} \frac{\sin t}{1+\cos^{2}(xt)} \ dt = \frac{1}{\pi} \left(\frac{\pi}{\sqrt{2}} \right) \left(2\right) = \sqrt{2} .$$