Let $x_1,x_2,\dots,x_n$ be independent identically distributed random variables uniform on $\{1,2,\dots,N\}$, and let: $Y_n:=\text{the number of different elements in } \{x_1,x_2,\dots,x_n\}$.
Let $T:=\inf\{n:Y_n=N\}$.
What is $E\left[T\right]$?
Let $x_1,x_2,\dots,x_n$ be independent identically distributed random variables uniform on $\{1,2,\dots,N\}$, and let: $Y_n:=\text{the number of different elements in } \{x_1,x_2,\dots,x_n\}$.
Let $T:=\inf\{n:Y_n=N\}$.
What is $E\left[T\right]$?
This question is commonly known as the coupon collector's problem. See here: http://en.wikipedia.org/wiki/Coupon_collector%27s_problem