Calculus: $$T_1=\prod_{k=1}^{n-1} \cos\frac{k\pi}{2n}$$ and $$T_2=\prod_{k=1}^{n-1}\sin\frac{k\pi}{2n}$$
My tried:
I use Euler's formal: $$z_k=e^{i\frac{k\pi}{2n}}=\cos\frac{k\pi}{2n}+i\sin \frac{k\pi}{2n}$$
$$\to\left\{\begin{matrix}\cos\frac{k\pi}{2n}=\frac{1}{2}\left(z_k+\frac{1}{z_k}\right)\\\sin\frac{k\pi}{2n}=\frac{1}{2i}\left(z_k-\frac{1}{z_k}\right)\end{matrix}\right.$$