How to prove that $\lim_{(x,y) \to (0,0)} \dfrac{x^3y}{x^4+y^2} = 0?$
First I tried to contradict by using $y = mx$ , but I found that the limit exists.
Secondly I tried to use polar coordinates, $x = \cos\theta $ and $y = \sin\theta$,
And failed .. How would you prove this limit equals $0$?