Prove that for a sequence $\displaystyle\sum\limits_{n=0}^\infty a_n$ that if $\displaystyle\sum\limits_{n=0}^\infty a_n < \infty$ then $a_n \rightarrow 0$.
Asked
Active
Viewed 209 times
0
-
You are right. Is a duplicate. – Umberto Jan 09 '14 at 20:05
1 Answers
1
Hints:
(1) We're given $\;\sum_{n=1}^\infty a_n=S\;$
(2) $\;a_n=S_n-S_{n-1}\;$
But (1), by definition, means $\;S_n\xrightarrow[n\to\infty]{}S\;$ , so ...
DonAntonio
- 214,715