Let $A=\left(\begin{array}{cccc}1&1&1&1\\0&1&0&1\\0&1&0&0\\1&0&0&0\end{array}\right)$.
You said you have transformed, using elementary row operations,
$$\left(\begin{array}{cccc|cccc}1&1&1&1&1&0&0&0\\0&1&0&1&0&1&0&0\\0&1&0&0&0&0&1&0\\1&0&0&0&0&0&0&1\end{array}\right)
\to\cdots\not\to
\left(\begin{array}{cccc|cccc}1&0&0&0&1&1&1&1\\0&1&0&0&0&1&0&1\\0&0&1&0&1&1&0&1\\0&0&0&1&0&1&1&0\end{array}\right)$$
But the first two rows must be wrong. Take the second resultant row as example, the row is the sum of initial rows 2 and 4, the only linear combination that can produce columns 5-8 of the resultant row; however
$$\begin{align*}&
R_2+R_4\\
=&\left(\begin{array}{cccc|cccc}0&1&0&1&0&1&0&0\end{array}\right) +
\left(\begin{array}{cccc|cccc}1&0&0&0&0&0&0&1\end{array}\right)\\
=&\left(\begin{array}{cccc|cccc}1&1&0&1&0&1&0&1\end{array}\right)\\
\ne&\left(\begin{array}{cccc|cccc}\color{red}0&\color{red}1&\color{red}0&\color{red}0&\color{green}0&\color{green}1&\color{green}0&\color{green}1\end{array}\right)\text{ in your answer}
\end{align*}$$
Similarly, your first resultant row is the sum of all 4 initial rows, as shown in columns 5-8. But if you add up the 4 initial rows together,
$$\begin{align*}
R_1+R_2+R_3+R_4
=&\left(\begin{array}{cccc|cccc}0&1&1&0&1&1&1&1\end{array}\right)\\
\ne&\left(\begin{array}{cccc|cccc}\color{red}1&\color{red}0&\color{red}0&\color{red}0&\color{green}1&\color{green}1&\color{green}1&\color{green}1\end{array}\right)\text{ in your answer}
\end{align*}$$
Back to the beginning. If you see carefully, the first and second rows of $\left(\begin{array}{c|c}I&A^{-1}\end{array}\right)$ should actually come from the fourth and third rows of $\left(\begin{array}{c|c}A&I\end{array}\right)$ respectively. Perform row swaps $R_4\leftrightarrow R_1$ and $R_3\leftrightarrow R_2$ first should give you a good start. But this is not the only way to start.
And I got the inverse as $A^{-1} = \left(\begin{array}{cccc}0&0&0&1\\0&0&1&0\\1&1&0&1\\0&1&1&0\end{array}\right)$