Let ${ A \in \mathbb{C} ^{n \times n} . }$
Note that by Jordan decomposition, there is exist generalized eigenvectors ${ v _1, \ldots, v _r }$ with eigenvalues ${ \lambda _1, \ldots, \lambda _r }$ respectively, such that
$${ \mathbb{C} ^n = \text{span} \, \mathscr{B}(v _1, \lambda _1) \oplus \ldots \oplus \text{span} \, \mathscr{B}(v _r, \lambda _r) . }$$
Consider the reversed bases
$${ \mathscr{B} ^{\text{rev}} (v _1, \lambda _1), \ldots, \mathscr{B} ^{\text{rev}} (v _r, \lambda _r) . }$$
What is the action of ${ A }$ on the reversed bases?
Note that the action of ${ A }$ on the bases ${ \mathscr{B} (v _i, \lambda _i) }$ and ${ \mathscr{B} ^{\text{rev}} (v _i, \lambda _i) }$ is
$${ A \mathscr{B}(v _i, \lambda _i) = \mathscr{B}(v _i, \lambda _i) \begin{pmatrix} \lambda _i &\, &\, &\, \\ 1 &\lambda _i &\, &\, \\ \, &\ddots &\ddots &\, \\ \, &\, &1 &\lambda _i \end{pmatrix} }$$
and
$${ A \mathscr{B} ^{\text{rev}} (v _i, \lambda _i) = \mathscr{B} ^{\text{rev}} (v _i, \lambda _i) \begin{pmatrix} \lambda _i &1 &\, &\, \\ \, &\lambda _i &1 &\, \\ \, &\, &\ddots &\ddots \\ \, &\, &\, &\lambda _i \end{pmatrix} . }$$
Hence consider the bases
$${ {\begin{aligned} &\, \mathscr{B} := (\mathscr{B}(v _1, \lambda _1), \ldots, \mathscr{B}(v _r, \lambda _r)), \\ &\, \mathscr{B} ^{’} := (\mathscr{B} ^{\text{rev}} (v _1, \lambda _1) , \ldots , \mathscr{B} ^{\text{rev}} (v _r, \lambda _r)) . \end{aligned}} }$$
Note that the action of ${ A }$ on the bases ${ \mathscr{B} }$ and ${ \mathscr{B} ^{’} }$ is
$${ {\begin{aligned} &\, A \mathscr{B} = \mathscr{B} J, \\ &\, A \mathscr{B} ^{’} = \mathscr{B} ^{’} J ^T \end{aligned}} }$$
where ${ J }$ is a Jordan normal form matrix.
Hence
$${ A \mathscr{B} ^{’} = \mathscr{B} ^{’} (\mathscr{B} ^{-1} A \mathscr{B}) ^T }$$
that is
$${ A \mathscr{B} ^{’} \mathscr{B} ^T = \mathscr{B} ^{’} \mathscr{B} ^T A ^T . }$$
Hence matrix of ${ A }$ with respect to the basis ${ \mathscr{B} ^{’} \mathscr{B} ^T }$ is ${ A ^T . }$