May I know if my proof is correct?
Consider $x$ such that $2014^{2014} \equiv x \pmod{1000}.$
By Euler's theorem, $2014^{\ \psi(1000)} =2014^{\ \psi(2^3)\psi(5^3)}=2014^{400}\equiv 1 \pmod{1000}$.
It follows that $2014^{2000} \equiv 1 \pmod{1000},$ hence $2014^{\ 14} \equiv x \pmod{1000}.$
By Binomial expansion, $2014^{\ 14} = 14^{\ 14}+2000m$, for some positive integer $m$.
Finally$, 14^{14} \equiv x \pmod{1000} \Longleftrightarrow \ x= 16$ and the last three digits are $016.$
In general, could we use the above method to determine the exact value of $n^n, \forall n \in \mathbb{N} ?$
Thank you and wish you a successful 2014!