The title says it all ... Formally, if $SO_n(\mathbb R)=\lbrace A\in M_n({\mathbb R}) |AA^{T}=I_n, {\sf det}(A)=1 \rbrace$ and $W\in SO_n(\mathbb R)$, is it true that for every integer $p$, there is a $V\in SO_n(\mathbb R)$ satisfying $V^p=W$ ?
This is obvious when $n=2$, because rotations in the plane are defined by an angle which can be divided at will.