Define a symmetric Toeplitz matrix by
$$\begin{pmatrix}c_1 & c_2 & c_3 & \cdots & c_n\\c_2 & c_1 & c_2 & \cdots & c_{n-1}\\c_3 & c_2 & c_1 & \cdots &c_{n-2}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\c_n & c_{n-1} & c_{n-2} & \cdots & c_1\end{pmatrix},$$
for
$$c_1 = 1, \qquad c_{k+1}=\frac{1}{2}\left((k+1)^{2-\alpha}-2 k^{2-\alpha}+(k-1)^{2-\alpha}\right) \quad (k>0),$$
where $\alpha \in (0, 1)$. How to prove that this matrix is positive definite?