I would appreciate if somebody could help me with the following problem
Q: How to integrate this integral $$\int\frac{1}{\sin x+ 3\cos x}dx$$
I would appreciate if somebody could help me with the following problem
Q: How to integrate this integral $$\int\frac{1}{\sin x+ 3\cos x}dx$$
\begin{align*} \int \frac 1 {\sin x +3\cos x}\ dx &= \int \frac 1 {2\sin \frac x 2\cos \frac x 2 +3\cos^2 \frac x 2 - 3 \sin^2 \frac x 2}\ dx \\ &= \int \frac 1 {\cos^2 \frac x 2} \cdot \frac 1 {3 + 2\tan \frac x 2 - 3 \tan^2 \frac x 2}\ dx \end{align*}
Switching $y=\tan \frac x 2 \implies\frac {dy}{dx} = \frac 1 2 \frac 1 {\cos^2 \frac x 2}$
\begin{align*} \int \frac 1 {\sin x +3\cos x}\ dx &= \int \frac 1 {3 + 2y - 3 y^2}2\ dy \\ &= 6\int \frac 1 {(3y-1-\sqrt{10})(3y-1+\sqrt{10})} \ dy \\ &= \frac 3 {\sqrt{10}}\int \frac 1 {3y-1-\sqrt{10}} - \frac 1 {3y-1+\sqrt{10}} \ dy \\ \end{align*}
I'll leave the rest.
$$1\cdot \sin x +3 \cdot \cos x=\sqrt{10} \cdot \sin (x+a)$$ where $a=\tan ^{-1}(3)$
So, now can you just apply the known integral of $\csc(x+a) $?