I want to find limit of $$ \int_{0}^{\infty}n{\rm e}^{-nx} \sin\left(\frac{1}{x}\right) {\rm d}x\quad\mbox{as}\quad n\to\infty $$ if it exists or to prove that it doesn't exist.
- I see that $n{\rm e}^{-nx}\sin\left(1/x\right)\to 0,\ \forall\ x > 0$ and that the convergence is uniform on $\left[a,\infty\right),\ \forall\ a > 0$.
- That implies $$ \int_{a}^{\infty}n{\rm e}^{-nx}\sin\left(\frac{1}{x}\right){\rm d}x \to 0\quad\mbox{as}\quad n\to\infty,\ \forall\ a > 0 $$
Can anyone tell me what the next step is or if I'm on the wrong track ?. Thanks.