2

$C_r$ stands for $_nC_r$

We have to show that

$ \frac{C_0}{1} -\frac{C_1}{5} + \frac{C_2}{9} +\ldots+ (-1)^n\cdot\frac{C_n}{4n+1} = \frac{4^n\cdot n!}{1.5.9\ldots(4n+1)}$

What I have done :

$\int_0^1(1-x^4)^ndx = \int_0^1(C_0 -C_1x^4+C_2x^8-\ldots +(-1)^nC_nx^{4n})dx$

$ I = $ Left hand side of what we have to prove . Now I have to just evaluate $I$ but I am stuck badly . Help me out in finding the integral .

abkds
  • 2,230

2 Answers2

2

$$ \int_0^1(1-x^4)^ndx=\{t=1-x^4\}=\frac{1}{4}\int_0^1 t^n (1-t)^{-3/4}dt=B\left(n+1,\frac{1}{4}\right)=\frac{\Gamma(n+1)\Gamma(1/4)}{\Gamma(n+5/4)} $$

Norbert
  • 58,398
2

Set :

$$I_{n}=\int_0^1(1-x^4)^n$$

Integrating by part, we have:

$$I_{n}=\int_0^1(1-x^4)^ndx=x(1-x^4) \mid_{0}^1- \int_{0}^{1}x .n(1-x^4).(-4).x^3dx=4n\int_{0}^{1}x^4(1-x^4)^{n-1}dx=-4n\int_{0}^{1}(1-x^4)(1-x^4)^{n-1}dx+4n\int_{0}^{1}(1-x^4)^{n-1}dx=-4nI_n+4nI_{n-1}$$

Which gives: $$I_{n}=\dfrac{4.n}{(1+4n)}.I_{n-1}= \frac{4^n\cdot n!}{1.5.9\ldots(4n+1)}$$