$C_r$ stands for $_nC_r$
We have to show that
$ \frac{C_0}{1} -\frac{C_1}{5} + \frac{C_2}{9} +\ldots+ (-1)^n\cdot\frac{C_n}{4n+1} = \frac{4^n\cdot n!}{1.5.9\ldots(4n+1)}$
What I have done :
$\int_0^1(1-x^4)^ndx = \int_0^1(C_0 -C_1x^4+C_2x^8-\ldots +(-1)^nC_nx^{4n})dx$
$ I = $ Left hand side of what we have to prove . Now I have to just evaluate $I$ but I am stuck badly . Help me out in finding the integral .