Let $f\in E'$ (dual space of $E$), $f\neq 0$, $M=\{f=0\}$. Prove that $\operatorname{dist}(x,M)=\dfrac {|f(x)|}{\|f\|}$.
My idea: $\operatorname{dist}(x,M)=\inf\limits_{v\in M}\|x-v\|$, $|f(x-v)|=|f(x)|\leq \|f\|\cdot\|x-v\|\implies \|x-v\|\geq\dfrac {|f(x)|}{\|f\|}$. But I can't prove the opposite inequality. Can anyone help me? Thank you.