I have not derived the approximation (2) yet,
but the approximation (1) is easy:
Set $q(\tau)=\mathrm{e}^{2\pi\mathrm{i}\tau}$.
We will use the Dedekind eta function
$$\eta(\tau) = q\left(\frac{\tau}{24}\right)
\prod_{n=1}^\infty\left(1-q(n\tau)\right)
= \frac{q\left(\frac{\tau}{24}\right)}{\sum_{n=0}^\infty P(n) q(n\tau)}$$
We also know the following modular forms property of $\eta(\tau)$:
$$\eta(\tau) = \sqrt{\frac{\mathrm{i}}{\tau}}\eta\left(\frac{-1}{\tau}\right)$$
Set $\tau=\frac{\mathrm{i}}{5}$.
Then $\frac{-1}{\tau} = 5\mathrm{i} = 25\tau$. Thus
$$\begin{align}
q(\tau) &= \mathrm{e}^{-2\pi/5}
\\ q\left(\frac{-1}{\tau}\right) &= q(25\tau)
= \mathrm{e}^{-10\pi} \approx 2\cdot10^{-14}
\\ \eta\left(\frac{-1}{\tau}\right)
&= \eta(25\tau) \approx q\left(\frac{25\tau}{24}\right)
\\ \eta(\tau) &= \sqrt{5}\,\eta(25\tau)
\approx \sqrt{5}\,q\left(\frac{25\tau}{24}\right)
\end{align}$$
That is, the $\prod_{n=1}^\infty\cdots$ used in $\eta(25\tau)$
well approximates $1$.
Thus
$$\begin{align}
\sum_{n=0}^\infty P(n) q\left((n+1)\tau\right) &=
\frac{q(\tau)\,q\left(\frac{\tau}{24}\right)}{\eta(\tau)} =
\frac{q\left(\frac{25\tau}{24}\right)}{\eta(\tau)}
\\ &\approx \frac{q\left(\frac{25\tau}{24}\right)}
{\sqrt{5}\,q\left(\frac{25\tau}{24}\right)}
= \frac{1}{\sqrt{5}}
\end{align}$$
Approximation (2) seems to require a little more.