Let $K=\mathbb{Q}(\sqrt[n]{a})$, where $a\in\mathbb{Q}$, $a>0$ and suppose $[K:\mathbb{Q}]=n$. Let $E$ be any subfield of $K$ and let $[E:\mathbb{Q}]=d$. Prove that $E=\mathbb{Q}(\sqrt[d]{a})$. Hint: Consider $N_{K/E}(\sqrt[n]{a})\in E$.
Attempt:
I proved that the norm is in $E$ and if $E\supset\mathbb{Q}(\sqrt[d]{a})$ I could prove that $E=\mathbb{Q}(\sqrt[d]{a})$, but I can't prove that $E\supset\mathbb{Q}(\sqrt[d]{a})$.