To simplify, first look at the case where $j'=0$, $k'=0$.
Clearly, for all nonzero integers $k$, $\int_{-\infty}^\infty \psi(x) \psi(x-k) dx = 0$, since $\psi(x)$ is nonzero only on $[0,1]$ and $\psi(x-k)$ is nonzero only on $[k,k+1]$.
For all $n \in \mathbb{Z}$, $\int_n^{n+1} \psi(x) dx = 0$, so if $a(x)$ is a function which is constant on the intervals $\{[n,n+1]\}_{n \in \mathbb{Z}}$, we have:
$$
\int_{-\infty}^\infty \psi(x)a(x)dx = \sum_{n=-\infty}^\infty \int_{n}^{n+1} \psi(x)a(x)dx= \sum_{k=-\infty}^\infty a(n+1/2) \int_{n}^{n+1} \psi(x)dx=0
$$
Note that $\psi(2^j x - k)$ is constant on the intervals $\{[n2^{-1-j},(n+1)2^{-1-j}]\}_{n \in \mathbb{Z}}$, so if $j<0$, it is constant on the unit intervals $\{[n,n+1]\}_{n \in \mathbb{Z}}$ as well, and so by the above equation we have $\int_{-\infty}^\infty \psi(2^j x - k) \psi(x) dx = 0$.
For the general case, we can shift and rescale to reduce it to the base case. Clearly, if $j>j'$ we can reverse the roles of $(j,k)$ and $(j',k')$, so let's assume $j\le j'$. To transform the integral, we make the substitution $2^{j'} x - k' = y \Leftrightarrow x = 2^{-j'} y + 2^{-j'}k'$.
$$\int_{-\infty}^\infty \psi(2^j x - k) \psi(2^{j'} x - k') dx =\frac{1}{2^{j'}} \int_{-\infty}^\infty \psi(2^{j-j'} y - (k-2^{j-j'}k')) \psi(y) dy$$
So by the base case, the above integral equals $0$ if $j-j'=0$ and $k-k' \ne 0$ or if $j-j'<0$.