1

I want to determine the radius of convergence of the power series $$\sum_{n\ge 1}{\frac{x^{n^2}}{n^2}}$$

Is my following try correct, and is there any simpler way to do this:

Put $a_n(x)=\frac{x^{n^2}}{n^2}$. If $x\not = 0$, $$\left|\frac{a_{n+1}(x)}{a_n(x)}\right|=\frac{n^2x^{2n+1}}{(n+1)^2}\sim_\infty x^{2n+1}$$

Now $ x^{2n+1}$ goes to $0<1$ when $|x|<1$ and goes to $\infty$ otherwise. Hence the radius of convergence is $R=1$.

2'5 9'2
  • 56,991
palio
  • 11,466

0 Answers0