Here is another perspective on colimits that I find useful, using some intuition from modules and tensor products.
Let $D$ be your diagram category. A left $D$-module is a functor $M:D\rightarrow Set$. If $\gamma:i\rightarrow j$ is a morphism in $D$ then we will denote the associated morphism $M(i)\rightarrow M(j)$ by $m\mapsto \gamma\cdot m$. Similarly, a right $D$-module is a functor $D^{op}\rightarrow Set$, and we denote the "action" of $\gamma$ as right multiplication.
Given a right $D$-module $N$ and a left $D$-module $M$ we may form
$$
N\times_D M := \left(\bigsqcup_i N_i\times M_i\right)\bigg/\sim
$$
where $\sim$ identifies $(n\cdot \gamma,m)\sim (n,\gamma\cdot m)$ for all $n\in N(j)$, $m\in M(i)$ and all edges $\gamma:i\rightarrow j$.
Now, the colimit of a functor $M:D\rightarrow Set$ is just given by "tensoring" with the trivial module:
$$
\mathrm{colim}(M) = \mathrm{triv}\times_D M
$$
where the trivial module is defined by $\mathrm{triv}(i)=\{\mathrm{pt}\}$ for all $i$, and each $\gamma:\mathrm{triv}(i)\rightarrow \mathrm{triv}(j)$ is the identity.
For an example, if $D$ is the category with two objects 1,2 and two morphisms $a,b:1\rightarrow 2$, then a left $D$-module is a choice of sets $M_1,M_2$ and two morphisms $a,b:M_1\rightarrow M_2$. The colimit of this $M$ is
$$
\Big(\{\mathrm{pt}\}\times M_1 \ \sqcup \ \{\mathrm{pt}\}\times M_2\Big)\Big/\sim
$$
where we identify $(\mathrm{pt},m) = (\mathrm{pt}\cdot a,m) = (\mathrm{pt},a\cdot m)$ and $(\mathrm{pt},m) = (\mathrm{pt}\cdot b,m) = (\mathrm{pt},b\cdot m)$ for all $m\in M_1$. Clearly, this is isomorphic to $M_2 / \langle a(m)\sim b(m)\:|\: \forall m\in M_1\rangle$. This is the usual coequalizer construction in $Set$.
I like this a lot because it is so easy to generalize to other settings. For instance, you can construct homotopy colimits (!) in a category of chain complexes of $\mathbb{k}$-modules as
$$
\mathbf{P}(\mathrm{triv})\otimes_{\mathbb{k}[D]} M,
$$
where $\mathbb{k}[D]$ denotes the linearization of $D$ (could be thought of as the path algebra of a quiver), and $\mathbf{P}(\mathrm{triv})$ denotes a projective resolution of its trivial right module.