1

I have to find the limit of $x^x$ as $x$ approaches $0$ without derivatives.

TMM
  • 10,065
Dipok
  • 811

2 Answers2

6

We wish to find $\lim_{x\to0^{+}}x^{x}$. Notice

$$x^{x}=e^{x\ln(x)}=e^{(-1)\frac{\ln(\frac{1}{x})}{(\frac{1}{x})}}$$

so it suffices to find $\lim_{y\to\infty}\frac{\ln(y)}{y}$.

$$\frac{\ln(y)}{y}=\frac{1}{y}\int_{1}^{y}\frac{1}{t}dt.$$

For $y\ge1$ we have that $\sqrt{y}\le y$ so $\frac{1}{y}\le\frac{1}{\sqrt{y}}$ so:

$$\frac{\ln(y)}{y}\le\frac{1}{y}\int_{1}^{y}\frac{1}{\sqrt{t}}dt=\frac{1}{y}(2\sqrt{y}-2)=\frac{2}{\sqrt{y}}-\frac{2}{y}.$$

But also $\frac{\ln(y)}{y}\ge0$ for $y\ge1$. By squeeze theorem the limit is $0$. Hence,

$$\lim_{x\to0^{+}}x^{x}=1.$$

TMM
  • 10,065
user71352
  • 13,233
1

I'm not sure if what i'm doing is right, please feel free to add comments if i was wrong: $\lim_{x \to 0} x^x = \lim_{x \to \infty} (\frac{1}{x})^\frac{1}{x} =\lim_{x \to \infty} \frac{1}{\sqrt[x]{x}}=\frac{1}{\lim_{x \to \infty}\sqrt[x]{x}}=1$

CODE
  • 5,119