PID means principal ideal ring and integral domain. I will use notation $R$ instead of $A$.
Let $J$ be an ideal in $S^{-1}R$. Then $\exists I$ ideal in $R$ such that $J=S^{-1}I$. Since $R$ is principal ideal and commutative with identity, we have $I=\langle a\rangle=Ra$ for some $a\in R$. We claim $S^{-1}I=S^{-1} \langle a\rangle = \langle a/s \rangle $ for any $s\in S$. Let $r/t\in S^{-1}I$. Then $r/t=r_1a/t_1$ for some $r_1\in R$ and $t_1\in S$. Note $$r/t=r_1a/t_1= r_1as/t_1s =(r_1s/t_1) (a/s).$$
Thus $r/t\in (S^{-1}R)(a/s)= \langle a/s \rangle $ and $S^{-1}I\subseteq \langle a/s \rangle$. Let $r/t \in \langle a/s \rangle$. Then $r/t=(r_1/t_1)(a/s)$ for some $r_1/t_1\in S^{-1}R$. Clearly $$r/t=(r_1/t_1)(a/s)=r_1a/t_1s\in S^{-1}I$$
since $r_1a\in \langle a\rangle =I$. Thus $\langle a/s \rangle \subseteq S^{-1}I$. Hence $S^{-1}I = \langle a/s \rangle$.
Now we show $S^{-1}R$ is integral domain. $S^{-1}R$ is commutative ring with identity. We claim $S^{-1}A$ has no zero divisor. Assume towards contradiction, $\exists a/s,b/t \in S^{-1}R -\{0/s\}$ such that $(a/s)(b/t)=ab/st=0/s$. So $\exists s_1\in S$ such that $s_1(abs-st0)=abss_1=0$. Since $R$ has no zero divisor and $0\notin S$, we have $a=0$ or $b=0$. WLOG, assume $a=0$. Then $a/s=0/s$. Thus we reach contradiction. Hence $S^{-1}R$ has no zero divisor. Therefore $S^{-1}R$ is integral domain.