The following formula for $\|T^{-1}\|$ is relevant for the question posted.
Let $(\mathcal E, \|\cdot\|_{\mathcal E})$ and $(\mathcal F, \|\cdot\|_{\mathcal F})$ be Banach spaces and let $\mathcal L(\mathcal E,\mathcal F)$ be the space of all bounded operators from $\mathcal E$ into $\mathcal F$. Let $T \in \mathcal L(\mathcal E,\mathcal F)$. The following two statements are equivalent.
- $T$ is an injection and the range of $T$, $\operatorname{ran} T$, is a closed subspace of $\mathcal F$.
- $\inf \bigl\{\|Tu\|_{\mathcal F}\, :\, u\in\mathcal E \quad \text{and} \quad \|u\|_{\mathcal E} = 1\bigr\} \gt 0$.
If either of the equivalent statements above is satisfied, then $T^{-1} \in \mathcal L(\operatorname{ran} T,\mathcal E)$ and
\begin{equation} \tag{*}
\inf \bigl\{\|Tu\|_{\mathcal F}\, :\, u\in\mathcal E \quad \text{and} \quad \|u\|_{\mathcal E} = 1\bigr\} = \frac{1}{\|T^{-1}\|},
\end{equation}
where $\|T^{-1}\|$ denotes the norm of $T^{-1}$ in the Banach space $\mathcal L(\operatorname{ran} T,\mathcal E)$.
Here are the proofs. Assume that $T$ is an injection and that $\operatorname{ran} T$ is closed in $\mathcal F$. Then $T: \operatorname{ran} T \to \mathcal E$ is a linear operator with a closed graph defined on a Banach space. By the Closed Graph Theorem the operator $T^{-1}$ is bounded. That is $T^{-1} \in \mathcal L(\operatorname{ran} T,\mathcal E)$.
Notice that $T$ is a bijection between the sets $\mathcal E\setminus\{0\}$ and $(\operatorname{ran} T)\setminus\{0\}$. We use this fact to calculate
\begin{align*}
\|T^{-1}\| & = \sup \bigl\{ \|T^{-1} x \|_{\mathcal E} : x \in \operatorname{ran} T \quad \text{and} \quad \|x\|_{\mathcal F} = 1 \bigr\} \\
& = \sup \left\{ \frac{\|T^{-1} x \|_{\mathcal E}}{\|x\|_{\mathcal F}} : x\in (\operatorname{ran} T) \setminus\{0\} \right\} \\
& = \sup \left\{ \frac{\|T^{-1} T v \|_{\mathcal E}}{\|T v\|_{\mathcal F}} : v\in {\mathcal E} \setminus\{0\} \right\} \\
& = \sup \left\{ \frac{\|v \|_{\mathcal E}}{\|T v\|_{\mathcal F}} : v\in {\mathcal E} \setminus\{0\} \right\} \\
& = \sup \left\{ \frac{1}{\|T u\|_{\mathcal F}} : u\in {\mathcal E} \quad \text{and} \quad \|u \|_{\mathcal E} = 1 \right\}.
\end{align*}
This proves 2. and (*).
Now assume 2. and denote by $m$ the infimum in there. Then for every $v \in \mathcal E$ we have $\|Tv\|_{\mathcal F} \geq m \|v\|_{\mathcal E}$. Therefore $T$ is injective. From the last inequality in a straightforward manner it also follows that $\operatorname{ran} T$ is closed.
Notice that the formula at the bottom of the first answer is a consequence of the triangle inequality and (*).
To see this, let $T \in \mathcal L(\mathcal E, \mathcal E)$ be invertible and $\|I - T\| \lt 1$. Let $x \in \mathcal E$ be such that $\|x\|_{\mathcal E} = 1$. Then by the triangle inequality
$$
\|Tx\|_{\mathcal E} = \|x - (I - T)x\|_{\mathcal E} \geq 1 - \|(I - T)x\|_{\mathcal E} \geq 1 - \|I - T\|.
$$
Thus
$$
\inf \bigl\{\|Tx\|_{\mathcal E}\, :\, x\in\mathcal E \quad \text{and} \quad \|x\|_{\mathcal E} = 1 \bigl\} \geq 1 - \|I - T\|
$$
and therefore by (*)
$$
\frac{1}{\|T^{-1}\|} \geq 1 - \|I - T\|.
$$