A nice and simple argument as been provided by did.
Here we use the fact that if $(Y_n,n\geqslant 1)$ is a strictly stationary sequence, and $\varphi\colon\mathbb R^\infty\to\mathbb R^\infty$ is measurable, then $\varphi((Y_n,n\geqslant 1))$ is a strictly stationary sequence. We use this with $\varphi((x_n,n\geqslant 1))=(x_nx_{n+1},n\geqslant 1)$. If $(X(n),n\geqslant 1)$ like in the OP was stationary, so would be the sequence $(\sin(nU)\sin((n+1)U),n\geqslant 1)$, that is, the sequence $(\cos U-\cos((2n+1)U),n\geqslant 1)$. Using this times $\varphi((x_n,n\geqslant 1)):=(x_
1,x_1+x_2,x_1+x_2+x_3,\dots)$, we would get the stationarity of $(y_n,n\geqslant 1)$ with $Y_n=\cos((2n-1)U)-\cos((2n+1)U)$. In this case, the random variables
$$\sum_{j=1}^nY_j=1-\cos((2n+1)U)\quad \mbox{and}\quad \sum_{j=n+1}^{2n}Y_j=\cos((2n+1)U)-\cos((4n+1)U)$$
should have the same distribution. But the first one is non-negative and the second one takes negative values with a positive probability.