Suppose square matrix $A$ with order-n, and $A^*$ is it's adjugate matrix, when $n>2$, prove: $\left(A^*\right)^*=\left|A\right|^{n-2}A$
Proof:
- when $A$ is invertible, $A^{-1}=\frac{1}{|A|}A^*$, so $A^*=|A|A^{-1}$, and then
\begin{align} \left(A^*\right)^* = \left|\left(|A|A^{-1}\right)\right| \left(|A|A^{-1}\right)^{-1} = \left|A\right|^n\left|A\right|^{-1}A|A|^{-1} = \left|A\right|^{n-2}A \end{align}
- how about the case $A$ is not invertible?
$|A|=0$, then seems we should show $\left(A^*\right)^*=0$
;-)When $n=2$ the double adjugate of a noninvertible matrix $A$ is $A$. – egreg Oct 06 '13 at 16:41