Let the expression inside the limit be $F(x, \phi)$. We want to evaluate $L = \lim_{x\to0} \frac{F(x, \phi)}{x^2}$.
Since $F(x, \phi)$ is an even function of $x$, its Taylor series around $x=0$ is of the form $F(x, \phi) = F(0, \phi) + \frac{F''(0, \phi)}{2}x^2 + O(x^4)$.
The limit is then $L = \frac{1}{2}F''(0, \phi)$, provided that $F(0, \phi)=0$.
The Taylor expansion of the term in the sum for small $x$ is given by
$$ \frac{\sin^2(nx)}{(nx)^2} = \frac{(nx - (nx)^3/6 + \dots)^2}{(nx)^2} = \frac{(nx)^2 - (nx)^4/3 + O(x^6)}{(nx)^2} = 1 - \frac{n^2 x^2}{3} + O(x^4) $$
Substitute this into the expression for $F(x, \phi)$
$$ F(x, \phi) = \frac{1}{2}\ln\cos\phi + \sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}\sin^{2}(n\phi)\left(1 - \frac{n^2x^2}{3} + O(x^4)\right) $$
Further separating the terms by powers of $x$ gives
$$ F(x, \phi) = \underbrace{\left(\frac{1}{2}\ln\cos\phi + \sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}\sin^{2}(n\phi)\right)}_{F(0, \phi)} - \frac{x^2}{3}\underbrace{\sum_{n=1}^{\infty}(-1)^{n-1}n\sin^{2}(n\phi)}_{S} + O(x^4) $$
Since $\sin^2\theta = \frac{1-\cos(2\theta)}{2}$, we write
$$ \sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}\sin^{2}(n\phi) = \frac{1}{2}\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n} - \frac{1}{2}\sum_{n=1}^{\infty}\frac{(-1)^{n-1}\cos(2n\phi)}{n} $$
Using the fact that $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}y^n}{n}=\ln(1+y)$ and its real part for $y=e^{i2\phi}$:
- $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n} = \ln(2)$
- $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}\cos(2n\phi)}{n} = \text{Re}[\ln(1+e^{i2\phi})] = \ln|1+e^{i2\phi}| = \ln(2\cos\phi)$
Thus, the sum is $\frac{1}{2}(\ln 2 - \ln(2\cos\phi)) = -\frac{1}{2}\ln\cos\phi$.
So, $F(0, \phi) = \frac{1}{2}\ln\cos\phi - \frac{1}{2}\ln\cos\phi = 0$.
From the initial expansion, the limit is:
$$ L = -\frac{1}{3} S = -\frac{1}{3}\sum_{n=1}^{\infty}(-1)^{n-1}n\sin^{2}(n\phi) $$
To evaluate the sum $S$, we again use $\sin^2(n\phi) = \frac{1-\cos(2n\phi)}{2}$:
$$ S = \frac{1}{2}\sum_{n=1}^{\infty}(-1)^{n-1}n - \frac{1}{2}\sum_{n=1}^{\infty}(-1)^{n-1}n\cos(2n\phi) $$
These divergent series are interpreted via Abel summation, using the series $\sum_{n=1}^{\infty}n z^n = \frac{z}{(1-z)^2}$:
- $\sum_{n=1}^{\infty}(-1)^{n-1}n = \lim_{y\to 1^-} \sum (-1)^{n-1}ny^n = \lim_{y\to 1^-} \frac{y}{(1+y)^2} = \frac{1}{4}$.
- $\sum_{n=1}^{\infty}(-1)^{n-1}n\cos(2n\phi) = \text{Re}\left[\sum_{n=1}^{\infty}(-1)^{n-1}n(e^{i2\phi})^n\right] = \text{Re}\left[\frac{e^{i2\phi}}{(1+e^{i2\phi})^2}\right]$.
Since $1+e^{i2\phi} = 2\cos\phi\,e^{i\phi}$, the term is $\text{Re}\left[\frac{e^{i2\phi}}{(2\cos\phi\,e^{i\phi})^2}\right] = \text{Re}\left[\frac{e^{i2\phi}}{4\cos^2\phi\,e^{i2\phi}}\right] = \frac{1}{4\cos^2\phi}$.
Substituting these results back into the expression for $S$:
$$ S = \frac{1}{2}\left(\frac{1}{4}\right) - \frac{1}{2}\left(\frac{1}{4\cos^2\phi}\right) = \frac{1}{8}\left(1 - \frac{1}{\cos^2\phi}\right) = \frac{1}{8}\frac{\cos^2\phi-1}{\cos^2\phi} = -\frac{\sin^2\phi}{8\cos^2\phi} = -\frac{1}{8}\tan^2\phi $$
The limit is $L = -\frac{1}{3}S$:
$$ L = -\frac{1}{3} \left(-\frac{1}{8}\tan^2\phi\right) = \frac{1}{24}\tan^2\phi $$