I was trying to solve $\displaystyle\int_0^1\frac{\operatorname{Ti_3^2}(x)}{x}\mathrm{d}x$, where $\displaystyle\operatorname{Ti_n}(x)=\sum_{k=0}^\infty\frac{(-1)^kx^{2k+1}}{(2k+1)^n}$ denotes the inverse tangent integral of order $n$. and $\displaystyle\operatorname{Ti_n}(x)=\int_0^x\frac{\operatorname{Ti_{n-1}}(t)}{t}\mathrm{d}t$
I started by using integration by parts, $$\displaystyle\int_0^1\frac{\operatorname{Ti_3^2}(x)}{x}\mathrm{d}x\overset{IBP}{=}[\operatorname{Ti_3}(x)\operatorname{Ti_4}(x)]_0^1-\int_0^1\frac{\operatorname{Ti_2}(x)\operatorname{Ti_4}(x)}{x}\mathrm{d}x$$ $$\displaystyle\overset{IBP}{=}\beta(3)\beta(4)-[\operatorname{Ti_2}(x)\operatorname{Ti_5}(x)]+\int_0^1\frac{\arctan(x)\operatorname{Ti_5}(x)}{x}\mathrm{d}x$$ $$\displaystyle\overset{IBP}{=}\beta(3)\beta(4)-\beta(2)\beta(5)+[\arctan(x)\operatorname{Ti_6}(x)]_0^1-\int_0^1\frac{\operatorname{Ti_6}(x)}{1+x^2}\mathrm{d}x$$ $$=\beta(3)\beta(4)-\beta(2)\beta(5)+\frac{\pi}{4}\beta(6)-\int_0^1\frac{\operatorname{Ti_6}(x)}{1+x^2}\mathrm{d}x$$ $$=\frac{\pi^3}{32}\beta(4)-\frac{5\pi^5}{1536}G+\frac{\pi}{4}\beta(6)-\int_0^1\frac{\operatorname{Ti_6}(x)}{1+x^2}\mathrm{d}x$$ The integral $\displaystyle\int_0^1\frac{\operatorname{Ti_6}(x)}{1+x^2}\mathrm{d}x$ has to evaluate to $\displaystyle-\frac{\pi^3}{32}\beta(4)-\frac{5\pi^5}{1536}G-\frac{\pi}{4}\beta(6)+\frac{381}{128}\zeta(7)$, because one closed form for the initial integral is $\displaystyle\frac{\pi}{2}\beta(6)+\frac{\pi^3}{16}\beta(4)-\frac{381}{128}\zeta(7)$, but I have no idea how to solve it.
I tried to use some identities for $\operatorname{Ti_6}(x)$, but I the only one I found was $\operatorname{Ti_6}(x)=\frac{1}{2i}\left(\operatorname{Li_6}(ix)-\operatorname{Li_6}(-ix)\right)$, and I think that only makes it worse.
There's probably a better approach than mine.
NIntegrate[ResourceFunction["ArcTanIntegral"][6, x]/(1 + x^2), {x, 0, 1}]. Also, using 1,000 terms in a series results in 0.345869:integrand = Series[ResourceFunction["ArcTanIntegral"][6, x]/(1 + x^2), {x, 0, 1000}] // Normal; Integrate[integrand, {x, 0, 1}] // N. – JimB Jun 21 '25 at 23:54NIntegrate[ResourceFunction["ArcTanIntegral"][3, x]^2/x, {x, 0, 1}]. – JimB Jun 22 '25 at 00:00