I want to show that $$\displaystyle I=\int_0^1\frac{\log(x)\log(1-x)}{x(1-x)}\operatorname{Li}_2(x)\mathrm{dx}=5\zeta(2)\zeta(3)-8\zeta(5)$$
I started by doing partial fraction, then we get $$\displaystyle I=\int_0^1\frac{\log(x)\log(1-x)}{x}\operatorname{Li}_2(x)\mathrm{d}x+\int_0^1\frac{\log(x)\log(1-x)}{1-x}\operatorname{Li}_2(x)\mathrm{d}x$$
Then in the second integral I did $1-x\to x$ $$\displaystyle\implies I=\int_0^1\frac{\log(x)\log(1-x)}{x}\operatorname{Li}_2(x)\mathrm{d}x+\int_0^1\frac{\log(x)\log(1-x)}{x}\operatorname{Li}_2(1-x)\mathrm{d}x$$
$$\displaystyle=\int_0^1\left(\frac{\log(x)\log(1-x)}{x}\right)(\operatorname{Li}_2(x)+\operatorname{Li}_2(1-x))\mathrm{d}x$$
$$\displaystyle(\because \operatorname{Li}_2(x)+\operatorname{Li}_2(1-x)=\frac{\pi^2}{6}-\log(x)\log(1-x))$$
$$\displaystyle\implies I=\frac{\pi^2}{6}\int_0^1\frac{\log(x)\log(1-x)}{x}\mathrm{d}x-\int_0^1\frac{\log^2(x)\log^2(1-x)}{x}\mathrm{d}x$$
The first integral is easy to evaluate, $\displaystyle I_1=\frac{\pi^2}{6}\int_0^1\frac{\log(x)\log(1-x)}{x}\mathrm{d}x$
$$\overset{IBP}{=}\frac{\pi^2}{6}[-\operatorname{Li}_2(x)\log(x)]_0^1+\frac{\pi^2}{6}\int_0^1\frac{\operatorname{Li}_2(x)}{x}\mathrm{d}x=\frac{\pi^2}{6}[\operatorname{Li}_3(x)]_0^1$$
$$\displaystyle=\frac{\pi^2}{6}\operatorname{Li}_3(1)=\zeta(2)\zeta(3)$$
The second integral I have no idea how to solve it, in WolframAlpha it gives an aproximation but I think the value is the same as $4\zeta(2)\zeta(3)-8\zeta(5)$, so I think everything I did is right.