Suppose a series $\sum\limits c_n$ converges absolutely and a sequence $k_n$ is bounded. Will the sequence $\sum\limits c_nk_n$ converge absolutely?
Since $k_n$ is bounded there must exist an integer $M>0$ such that $\vert k_n \vert \leq M$. We then get $\vert \sum\limits c_n k_n \vert \leq \sum\limits \vert c_nk_n\vert \leq M\sum\limits \vert c_n \vert < M\epsilon$. Does this show that $\sum\limits\vert c_nk_n\vert $ converges absolutely?