The problem $2176$ in Math. Mag. 96 (3) 2023 require to show that $\int_{0}^{1} \frac{\log\bigl(x^2 + x + 1\bigr)}{x^2 + 1}\,\mathrm dx \;=\; \frac{\pi}{6}\,\log\!\bigl(\sqrt{3} + 2\bigr) \;-\;\frac{C}{3}$ where $C$ is the Catalan's constant, and you can find the nice solution on page $144$ here.
Now if we consider the sequence $ I(n) = \int_{0}^{1} \frac{\log\bigl( \sum_{i=0}^n x^i \bigr)}{x^2 + 1}\,\mathrm dx \ $
it's simple to show that $ I(1) = \frac{\pi}{8}\,\log\!\bigl(2\bigr)$ and $I(3) = \frac{5\pi}{8}\,\log\!\bigl(2\bigr) \;-\;C$.
Is it possible to find a closed form for the limit $\lim_{n\to \infty} I(n)$?