1

I'm looking for some ideas to prove the following inequality.

Problem. Let $a,b,c$ be three non-negative real numbers with $a+b+c=4.$ Prove that$$\sqrt{a+5bc+4}+\sqrt{b+5ca+4}+\sqrt{c+5ab+4}\ge 2\sqrt{6}\sqrt{ab+bc+ca}.$$When does equality hold?
Source: Tran Ngoc Khuong Trang@IIBAAK.

Equality holds iff $a=b=c=\dfrac{4}{3}$ or $a=b=2,\ c=0$ and its permutations.

Here is an idea.

By a homogenization, we'll prove the inequality$$\color{black}{\sum_{\mathrm{cyc}}\sqrt{a(a+b+c)+20bc+(a+b+c)^2}\ge 4\sqrt{6}\sqrt{ab+bc+ca}}$$or$$\color{black}{\sum_{\mathrm{cyc}}\sqrt{2a^2+b^2+c^2+3ab+3ac+22bc}\ge 4\sqrt{6}\sqrt{ab+bc+ca}.}$$Now, we may use Holder inequality as follow$$\color{black}{\left(\sum_{\mathrm{cyc}}\sqrt{2a^2+b^2+c^2+3ab+3ac+22bc}\right)^2\cdot\sum_{\mathrm{cyc}}\frac{(a^2+b^2+c^2+2ab+2ac+6bc)^3}{2a^2+b^2+c^2+3ab+3ac+22bc}\ge }$$$$\ge \left[\sum_{\mathrm{cyc}}(a^2+b^2+c^2+2ab+2ac+6bc)\right]^3$$and it remains to prove$$\color{black}{\left[4ab+4bc+4ca+3(a+b+c)^2\right]^3\ge 96(ab+bc+ca)\cdot\sum_{\mathrm{cyc}}\frac{(a^2+b^2+c^2+2ab+2ac+6bc)^3}{2a^2+b^2+c^2+3ab+3ac+22bc}.}$$This inequality is true and has an ugly equivalent SOS expression.

Also, I wonder that Mixing Variables technique helps here (MV method). Could someone please answer my question?

Hope you share some ideas to solve this inequality. Thank you for your interest!

1 Answers1

4

Yes, Mixing Variables technique helps.

By your work we need to prove that: $$\sum_{cyc}\sqrt{2a^2+3ab+3ac+b^2+c^2+22bc}\geq4\sqrt{6(ab+ac+bc)}.$$ Now, let $a\geq b\geq c$.

We'll prove that $$\sqrt{2a^2+3ab+3ac+b^2+c^2+22bc}+\sqrt{2b^2+3ab+3bc+a^2+c^2+22ac}\geq$$ $$\geq\sqrt{3a^2+3b^2+18ab+50ac+50bc+4c^2}.$$

Indeed, after squaring of the both sides we need to prove that: $$2\sqrt{(2a^2+3ab+3ac+b^2+c^2+22bc)(2b^2+3ab+3bc+a^2+c^2+22ac)}\geq12ab+25ac+25bc+2c^2$$ or $$(a-b)^2(8a^2+8b^2+52ab+188ac+188bc-349c^2)\geq0,$$ which is true for $a\geq b\geq c$.

Thus, it's enough to prove that: $$\sqrt{3a^2+3b^2+18ab+50ac+50bc+4c^2}+\sqrt{2c^2+3ac+3bc+a^2+b^2+22ab}\geq4\sqrt{6(ab+ac+bc)}$$ or $$2\sqrt{(3a^2+3b^2+18ab+50ac+50bc+4c^2)(2c^2+3ac+3bc+a^2+b^2+22ab)}+$$ $$+4a^2+4b^2-56ab-43ac-43bc+6c^2\geq0$$ and since $4a^2+4b^2\geq8ab,$ it's enough to prove: $$2\sqrt{(3a^2+3b^2+18ab+50ac+50bc+4c^2)(2c^2+3ac+3bc+a^2+b^2+22ab)}\geq$$ $$\geq48ab+43ac+43bc-6c^2$$ or $f(a)\geq0,$ where $$f(a)=12a^4+336a^3b-696a^2b^2+336ab^3+12b^4+$$ $$+(236a^3+724a^2b+724ab^2+236b^3)c-(1209a^2+1496ab+1209b^2)c^2+$$ $$+964(a+b)c^3-4c^4.$$ But, $$f'(a)=48a^3+1008a^2b-1392ab^2+336b^3+$$ $$+(708a^2+1448ab+724b^2)c-(2418a+1426b)c^2+964c^3$$ and $$f''(a)=144a^2+2016ab-1392b^2+1416ac+1448bc-2418c^2\geq0,$$ which says $$f'(a)\geq48b^3+1008b^3-1392b^3+336b^3+$$ $$+(708b^2+1448b^2+724b^2)c-(2418b+1426b)c^2+964c^3=$$ $$=c(b-c)(2880b-964c)\geq0$$ and we obtain: $$f(a)\geq12b^4+336b^4-696b^4+336b^4+12b^4+$$ $$+(236b^3+724b^3+724b^3+236b^3)c-(1209b^2+1496b^2+1209b^2)c^2+$$ $$+964(b+b)c^3-4c^4=4c(b-c)^2(480b-c)\geq0,$$ which finishes a proof.