We seek to show that with $1\le m\le n$
$$\sum_{q=1}^m (-1)^{q-1} {n-q\choose n-m}
\left[{n+m\choose q} - {n+m\choose q-1}\right]
= {n\choose m}.$$
Re-write to obtain
$$\sum_{q=1}^m (-1)^{q-1} {n-q\choose m-q}
\left[{n+m\choose q} - {n+m\choose q-1}\right]
= {n\choose m}.$$
We get for the first piece using the extractor to
enforce the upper range
$$[z^m] (1+z)^n \sum_{q\ge 1} {n+m\choose q} (-1)^{q-1}
\frac{z^q}{(1+z)^q}
\\ = {n\choose m} +
[z^m] (1+z)^n \sum_{q\ge 0} {n+m\choose q} (-1)^{q-1}
\frac{z^q}{(1+z)^q}
\\ = {n\choose m}
- [z^m] (1+z)^n
\left[1-\frac{z}{1+z}\right]^{n+m}
\\ = {n\choose m} - [z^m] \frac{1}{(1+z)^m}
= {n\choose m} - (-1)^m {2m-1\choose m}.$$
Continuing with the second piece including the sign,
$$-[z^m] (1+z)^n \sum_{q\ge 1} {n+m\choose q-1} (-1)^{q-1}
\frac{z^q}{(1+z)^q}
\\ = -[z^{m-1}] (1+z)^{n-1}
\sum_{q\ge 1} {n+m\choose q-1} (-1)^{q-1}
\frac{z^{q-1}}{(1+z)^{q-1}}
\\ = -[z^{m-1}] (1+z)^{n-1}
\left[1-\frac{z}{1+z}\right]^{n+m}
\\ = - [z^{m-1}] \frac{1}{(1+z)^{m+1}}
= - (-1)^{m-1} {2m-1\choose m-1}.$$
Collecting everything,
$${n\choose m} - (-1)^m {2m-1\choose m}
+ (-1)^m {2m-1\choose m} = {n\choose m}.$$
This is the claim.