I had just encountered the integral in the post, $$ \int_0^{\infty} \frac{\ln ^2 x}{(1+x)^2} d x=\frac {\pi^2} {3}$$ which attracts me to explore a bit further. $$I(m,2)= \int_0^{\infty} \frac{\ln ^{m} x}{(1+x)^2} d x $$ as $\int_0^{\infty} \frac{\ln ^{m} x}{(1+x)^2} d x=0$ for any odd integer $n$.
For any even integer $m $, let’s contract the interval $(0, \infty )$ to $(0,1)$ with the inverse substitution $x\mapsto \frac{1}{x}$ on $(1,\infty)$ and obtain $$ I(m,2)=2 \int_0^1 \frac{\ln ^m x}{(1+x)^2} d x $$
Using the series $\frac{1}{(1+x)^2}=\sum_{n=1}^{\infty}(-1)^{n-1} n x^{n-1}$, $$ \begin{aligned} I_m & =2 \int_0^1 \ln^m x \sum_{n=1}^{\infty}(-1)^{n-1} n x^{n-1} d x \\ & =2 \sum_{n=1}^{\infty}(-1)^{n-1} \int_0^1 x^{n-1} \ln^m x d x \\ & =2 \sum_{n=1}^{\infty}(-1)^{n-1} n \int_0^{\infty} y^m e^{-n y} d y, \quad \textrm{ where } y=e^{-x} \\ & =2 \sum_{n=1}^{\infty}(-1)^{n-1} n \cdot\frac{\Gamma(m+1)}{n^{m+1}} \\ & =2 m! \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^m} \\ & =2 m!\left(1-2 \cdot \frac{1}{2^m}\right) \zeta(m) \\ &= \left(2-2^{2-m}\right) m! \zeta(m) \end{aligned} $$ We can now conclude that for any even integer $m$, $$\boxed{ \int_0^{\infty} \frac{\ln ^{m} x}{(1+x)^2} d x = \left(2-2^{2-m}\right) m! \zeta(m) \cdots (1)}$$
Let’s go further with $$I(m,3)= \int_0^{\infty} \frac{\ln ^{m} x}{(1+x)^3} d x $$
We start with the simpler case: when $m$ is even.
Contracting again the integration interval to $(0,1)$ with inverse substitution yields $$ \begin{aligned} I(m, 3) &=\int_0^1 \left.\frac{\ln x}{(1+x)^3}+\frac{x \ln x}{(1+x)^3}\right] d x \\ & =\int_0^1 \frac{\ln ^m x}{(1+x)^2} d x \\&=\frac{1}{2} \int_0^\infty \frac{\ln ^m x}{(1+x)^2} d x\\ & =\left(1-2^{1-m}\right) m!\zeta(m) \quad (\textrm{ using }(1)) \end{aligned} $$ Now for the odd integer $m>1$, we use integration by parts repeatedly. $$ \begin{aligned} I(m, 3) & =\int_0^1 \frac{(1-x) \ln ^m x}{(1+x)^3} d x \\ & =\int_0^1 \ln ^m x d\left(\frac{x}{(x+1)^2}\right) \\ & =-m \int_0^1 \frac{\ln ^{m-1} x}{(x+1)^2} d x \\ & =-m \int_0^1 \ln ^{m-1} x d\left(\frac{x}{x+1}\right) \\ & =m(m-1) \int_0^1 \frac{\ln ^{m-2} x}{x+1} d x \\ & =m(m-1)\left[-\frac{1}{2^{m-2}}\left(2^{m-2}-1\right) \Gamma(m-1)\zeta(m-1)\right] \\ & =-\left(1-2^{2-m}\right)m! \zeta(m-1) \end{aligned} $$
My Question:
Though we can endlessly raise the power of the denominator and evaluate them one by one with higher difficulty in this way, we still wish to have a general method to evaluate the integral $$ I(m,n)= \int_0^{\infty} \frac{\ln ^m x}{(1+x)^n} d x ?$$