Consider a matrix $\mathbf{A} \in \{0, 1\}^{K \times N}$ and a vector $\mathbf{b} \in \mathbb{Z}_{>0}^{K \times 1}$ (i.e., elements of $\mathbf{A}$ are either $0$ or $1$, and elements of $\mathbf{b}$ are positive integers). We define two optimization problems:
Problem 1 (Linear Program) \begin{align*} & \text{Minimize:} & & \sum_{i=1}^{N} x_i \\ & \text{Subject to:} & & \mathbf{A} \mathbf{x} \ge \mathbf{b} \\ & & & x_i \geq 0 \quad \forall i \in \{1, \ldots, N\} \end{align*} Let the optimal solution be $\mathbf{x}^* = [x_1^*, \ldots, x_N^*]^{\mathrm{T}}$, and define $R_1 := \sum_{i=1}^{N} x_i^*$.
Problem 2 (Integer Program) \begin{align*} & \text{Minimize:} & & \sum_{i=1}^{N} y_i \\ & \text{Subject to:} & & \mathbf{A} \mathbf{y} \ge \mathbf{b} \\ & & & y_i \in \mathbb{N} \quad \forall i \in \{1, \ldots, N\} \end{align*} Let the optimal solution be $\mathbf{y}^* = [y_1^*, \ldots, y_N^*]^{\mathrm{T}}$, and define $R_2 := \sum_{i=1}^{N} y_i^*$.
Question:
Is it always true that $R_2 = \lceil R_1 \rceil$?
I have conducted extensive numerical simulations with randomly generated matrices $\mathbf{A} \in \{0,1\}^{K \times N}$ and vectors $\mathbf{b} \in \mathbb{Z}_{>0}^K$, and I have yet to find a counterexample. Any rigorous proof or a counterexample would be greatly appreciated.
This question has also been posted on [Operations Research Stack Exchange]https://or.stackexchange.com/questions/13181/relationship-between-optimal-solutions-of-a-linear-program-and-its-integer-count