I want to prove the formula
$$
\vdash\alpha \to ((\alpha \to \beta) \to \beta)
$$
using only the Hilbert-style system (without using the Deduction Theorem).
The axioms are:
- $A_1(\alpha, \beta) = \alpha \to (\beta \to \alpha)$
- $A_2(\alpha, \beta, \gamma) = (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$
- $A_3(\alpha, \beta) = ((\lnot \beta \to \lnot \alpha) \to (\alpha \to \beta))$
And Modus Ponens (MP): from $\alpha$ and $\alpha \to \beta$, infer $\beta$. $$ MP\left(\alpha,\left(\alpha\rightarrow\beta\right)\right)=\beta $$
I've had a couple of ideas, but I got stuck in the end. Here's some of what I tried:
$$ A_1\left(q,r\right)=\left(q\rightarrow\left(r\rightarrow q\right)\right)=\varphi_0 $$ $$ A_1\left(\varphi_0,\alpha\right)=\left(\varphi_0\rightarrow\left(\alpha\rightarrow\varphi_0\right)\right) $$ $$ MP\left(1,2\right)=\left(\alpha\rightarrow\varphi_0\right) $$ $$ A_1\left(\varphi_0,\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)=\left(\varphi_0\rightarrow\left(\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\rightarrow\varphi_0\right)\right) $$ $$ \left(\alpha\rightarrow\left(\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\rightarrow\varphi_0\right)\right) $$ $$ A_2(\alpha,\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right),\varphi_0)=\left(\left(\alpha\rightarrow\left(\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\rightarrow\varphi_0\right)\right)\rightarrow\left(\left(\alpha\rightarrow\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)\rightarrow\left(\alpha\rightarrow\varphi_0\right)\right)\right) $$ $$ MP\left(5,6\right)=\left(\left(\alpha\rightarrow\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)\rightarrow\left(\alpha\rightarrow\varphi_0\right)\right) $$ $$ A_1\left(\alpha,\varphi_0\right)=\left(\alpha\rightarrow\left(\varphi_0\rightarrow\alpha\right)\right) $$ $$ A_2\left(\alpha,\varphi_0,\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)=\left(\left(\alpha\rightarrow\left(\varphi_0\rightarrow\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)\right)\rightarrow\left(\left(\alpha\rightarrow\varphi_0\right)\rightarrow\left(\alpha\rightarrow\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)\right)\right) $$ $$ A_1\left(\varphi_0,\left(\alpha\rightarrow\left(\varphi_0\rightarrow\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)\right)\right)=\left(\varphi_0\rightarrow\left(\left(\alpha\rightarrow\left(\varphi_0\rightarrow\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)\right)\rightarrow\varphi_0\right)\right) $$ $$ \left(\left(\alpha\rightarrow\left(\varphi_0\rightarrow\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)\right)\rightarrow\varphi_0\right) $$ $$ A_1\left(\varphi_0,\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)=\left(\varphi_0\rightarrow\left(\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\rightarrow\varphi_0\right)\right) $$ $$ \left(\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\rightarrow\varphi_0\right) $$ $$ A_2(\varphi_0,\left(\alpha\rightarrow\beta\right),\beta)=\left(\left(\varphi_0\rightarrow\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)\rightarrow\left(\left(\varphi_0\rightarrow\left(\alpha\rightarrow\beta\right)\right)\rightarrow\left(\varphi_0\rightarrow\beta\right)\right)\right) $$ $$ A_1\left(\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right),\varphi_0\right)=\left(\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\rightarrow\left(\varphi_0\rightarrow\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)\right) $$ $$ A_2\left(\alpha,\alpha,\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)=\left(\left(\alpha\rightarrow\left(\alpha\rightarrow\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)\right)\rightarrow\left(\left(\alpha\rightarrow\alpha\right)\rightarrow\left(\alpha\rightarrow\left(\left(\alpha\rightarrow\beta\right)\rightarrow\beta\right)\right)\right)\right) $$
I got lost trying to connect the pieces and actually derive the target formula.
Any help completing this proof using only axioms and MP would be appreciated!