$$S_n=\sum_{s=1}^{n} \sum_{r=1}^{n}|2r-s|=2\sum_{s=1}^n\left[\sum_{r=1}^
{\lfloor s/2 \rfloor} (s/2-r)+\sum_{r=1}^{\lfloor s/2 \rfloor+1} (r-s/2)\right]$$
works well and one gets $S_n$: $1,6,20,46,89,152,240,356,505,690,...$
As per the comments of @Claude Leibovici the third differences of this sequence oscillate as $\{3,5,3,5,3,5,3\}$, indicating separate expressions for $S_n$ when $n$ is even or odd. The final answer here below does conform to this feature.
For alalytic expression, let us define $t=\lfloor n/2 \rfloor$
$$S_n=\sum_{r=1}^{t}\left[\sum_{s=1}^{2r} (2r-s)+ \sum_{s=2r+1}^{n} (s-2r)\right]+\sum_{r=t+1}^n \sum_{s=1}^n (2r-s).$$
Let $|2r-s|=k$, then
$$S_n=\sum_{r=1}^t\left[ \sum_{k=0}^{2r-1} k +\sum_{k=1}^{n-2r} k\right]+\sum_{r=t+1}^n ~\sum_{k=
2n-r}^{2n-1} k.$$
$$S_n=\sum_{r=1}^t [r(2r-1)+\frac{1}{2} (n-2r)(n-2r+1)]+ \sum_{r=t+1}^n \frac{1}{2}n (4n-r-1).$$
$$\implies S_n=\frac{n^3}{3}+n^2t-2nt^2+\frac{4t^2}{3}+\frac{n^2}{2}-nt+t^2-\frac{t}{3}.$$
$$\implies S_{2m}=\frac{m}{3}(16m^2+3m-1)
\quad \text{and} \quad S_{2m-1}=\frac{m}{3}(16m^2-21m+8),$$
which are consistent with the results of @Martin R in his solution given here.
Thank you Prasad Sir