\begin{align} &\sum_{i=0}^n \frac{n!}{n^n} \\ \end{align}
I tried Ratio test which gives $\lim_{n\to \infty}(\frac{n}{n+1})^n$. But I'm not sure how to show this is less than 1.
\begin{align} &\sum_{i=0}^n \frac{n!}{n^n} \\ \end{align}
I tried Ratio test which gives $\lim_{n\to \infty}(\frac{n}{n+1})^n$. But I'm not sure how to show this is less than 1.
The limit you are considering converges to $1/e<1$. Indeed: $$\lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n = \lim_{n \to \infty} \frac{1}{\left(1+\frac{1}{n}\right)^n}=\frac{1}{e}$$