Let's place the definitions in the post to start. If $f:X\to Y$ is a morphism of ringed spaces and $\mathcal{G}$ is a sheaf of $\mathcal{O}_Y$-modules, then $f^*\mathcal{G}$ is defined as the tensor product $f^{-1}\mathcal{G} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$, where $f^{-1}\mathcal{G}$ is the sheafification of the presheaf $f^{-1,pre}\mathcal{G}$ defined by sending $U\subset X$ to $\lim_{V\supset f(U)} \mathcal{G}(V)$. We therefore have a sequence of morphisms $$ f^{-1,pre}\mathcal{G} \to f^{-1}\mathcal{G} \to f^{-1}\mathcal{G}\otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X \cong f^*\mathcal{G}$$ where the first map is sheafification and the second map is given by $s\mapsto s\otimes 1$ for all sections over all opens. For a section $s\in \Gamma(U,\mathcal{G})$, we define the pullback section $f^*s \in \Gamma(f^{-1}(U),f^{*}\mathcal{G})$ to be the image of $s\in \Gamma(f^{-1}(U),f^{-1,pre}\mathcal{G})$ under this chain of morphisms. (A pleasing feature of this is that if you view $s\in\Gamma(U,\mathcal{G})$ as the image of a morphism $s:\mathcal{O}_U\to\mathcal{G}|_U$ given by $1\mapsto s$, then $f^*s$ is exactly the image of $1\in\mathcal{O}_{f^{-1}(U)}$ under the pullback map $f^*s:f^*\mathcal{O}_U\to f^*\mathcal{G}$ where we make the canonical identification $\mathcal{O}_{f^{-1}(U)}\cong f^*\mathcal{O}_U$. Details left to the reader.)
We can also identify the sections of $f^{-1,pre}f_*\mathcal{F}$ over an open $U\subset X$: by the definition of $f^{-1,pre}$, $\Gamma(U,f^{-1,pre}f_*\mathcal{F}) = \lim_{V\supset f(U)} (f_*\mathcal{F})(V)$, and then by the definition of $f_*$, we have that $(f_*\mathcal{F})(V) = \mathcal{F}(f^{-1}(V))$, so $\Gamma(U,f^{-1,pre}f_*\mathcal{F}) = \lim_{V\supset f(U)} \mathcal{F}(f^{-1}(V))$, where $V$ runs over open sets of $Y$ containing $f(U)$.
With all this background, let's construct the counit map. The counit map $f^*f_*\mathcal{F}\to\mathcal{F}$ is induced from the map $f^{-1,pre}f_*\mathcal{F}\to\mathcal{F}$ given over an open $U\subset X$ by sending an element of our colimit represented by $s_V\in\mathcal{F}(f^{-1}(V))$ to $s_V|_U$ - this works because $V\supset f(U)$ implies $f^{-1}(V)\supset U$, and it plays nice with restrictions because it is itself a restriction map. The way we use this map $f^{-1,pre}f_*\mathcal{F}\to\mathcal{F}$ to induce the counit map $f^*f_*\mathcal{F}\to\mathcal{F}$ is by noting first that since $\mathcal{F}$ is a sheaf, the map $f^{-1,pre}f_*\mathcal{F}\to\mathcal{F}$ factors uniquely through the sheafification $f^{-1}f_*\mathcal{F}$, then as the target is an $\mathcal{O}_X$-module, the map $f^{-1}f_*\mathcal{F}\to\mathcal{F}$ factors through $f^{-1}f_*\mathcal{F}\to f^{-1}f_*\mathcal{F}\otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X\to\mathcal{F}$ where the first map is $s\mapsto s\otimes 1$ for all sections $s$ over all opens. As $f^{-1}f_*\mathcal{F}\otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X\cong f^*f_*\mathcal{F}$, we have our desired counit map. (The proof that this is the counit map is somewhat involved and covered elsewhere, so let me skip that in this post.)
Tracing through this definition, we see that if $s\in \mathcal{F}(X)$ is a global section, then under the map $f^{-1,pre}f_*\mathcal{F}\to\mathcal{F}$, $s$ is again sent to $s$: for any $V\supset f(X)$, we have $f^{-1}(V)=X$, so the colimit is just $\mathcal{F}(X)$, and the restriction map is just the identity! From our background on the definition of $f^*s$, we see that this implies $f^*s$ maps to $s$ under the counit map, providing the answer to your question.
In response to a question in the comments about why this is the counit map, here's the essential logic:
For a map of topological spaces $f:X\to Y$ there is an adjunction between the functors $f^{-1,pre}: Psh(Y) \to Psh(X)$ and $f_*: Psh(X)\to Psh(Y)$. The counit $\epsilon:f^{-1,pre}f_*\mathcal{F} \to \mathcal{F}$ is defined on an open set $U\subset X$ by sending a section $s_V\in \lim_{V\supset f(U)} \mathcal{F}(f^{-1}(V))$ to $s_V|_U$, which works since $V\supset f(U)$ implies $f^{-1}(V)\supset U$. The unit $\eta: \mathcal{G}\to f_*f^{-1,pre}\mathcal{G}$ is defined on an open $V\subset Y$ by sending $s\in\mathcal{G}(V)$ to $s_V \in \lim_{W\supset f(f^{-1}(V))} \mathcal{G}(W)$, which works because $V\supset f(f^{-1}(V))$. The map $$\operatorname{Hom}_{Psh(X)}(f^{-1,pre}\mathcal{G},\mathcal{F}) \to \operatorname{Hom}_{Psh(Y)}(\mathcal{G},f_*\mathcal{F})$$ is defined by $$(f^{-1,pre}\mathcal{G}\stackrel{\varphi}{\to} \mathcal{F}) \mapsto (\mathcal{G}\stackrel{\eta}{\to} f_*f^{-1,pre}\mathcal{G}\stackrel{f_*\varphi}{\to} f_*\mathcal{F})$$ while the map $$\operatorname{Hom}_{Psh(Y)}(\mathcal{G},f_*\mathcal{F}) \to \operatorname{Hom}_{Psh(X)}(f^{-1,pre}\mathcal{G},\mathcal{F})$$ is defined by $$(\mathcal{G}\stackrel{\psi}{\to} f_*\mathcal{F}) \mapsto (f^{-1,pre}\mathcal{G}\stackrel{f^{-1,pre}\psi}{\to} f^{-1,pre}f_*\mathcal{F} \stackrel{\epsilon}{\to} \mathcal{F}).$$ Checking these are adjunctions boils down to checking these two maps are mutually inverse. Everyone needs to do this computation for themselves once in their lives, and I am not going to deprive you of that opportunity. (It's a definition chase with a bit of bookkeeping. I would recommend a blackboard or a whiteboard. If you need to use paper, don't be shy about multiple sheets or a good amount of eraser work.)
If $\mathcal{F}$ and $\mathcal{G}$ are sheaves, we may upgrade the adjunction $$\operatorname{Hom}_{Psh(X)}(f^{-1,pre}\mathcal{G},\mathcal{F}) \cong \operatorname{Hom}_{Psh(Y)}(\mathcal{G},f_*\mathcal{F})$$ to an adjunction $$\operatorname{Hom}_{Sh(X)}(f^{-1}\mathcal{G},\mathcal{F}) \cong \operatorname{Hom}_{Sh(Y)}(\mathcal{G},f_*\mathcal{F})$$ via the universal property of sheafification: given a presheaf map $f^{-1,pre}\mathcal{G}\to \mathcal{F}$, as $\mathcal{F}$ is a sheaf the map factors uniquely through the sheafification $f^{-1}\mathcal{G}$, and so the left-hand sides of those two lines are canonically in bijection. On the other hand, since sheaves are a full subcategory of presheaves, the right hand sides are canoncially in bijection.
If $X$ and $Y$ are ringed spaces and $f$ is a morphism of ringed spaces, we may upgrade the adjunction $$\operatorname{Hom}_{Sh(X)}(f^{-1}\mathcal{G},\mathcal{F}) \cong \operatorname{Hom}_{Sh(Y)}(\mathcal{G},f_*\mathcal{F})$$ to an adjunction $$\operatorname{Hom}_{\mathcal{O}_X}(f^*\mathcal{G},\mathcal{F}) \cong \operatorname{Hom}_{\mathcal{O}_Y}(\mathcal{G},f_*\mathcal{F}).$$ The first step is that $\mathcal{G}\to f_*\mathcal{F}$ is a morphism of $\mathcal{O}_Y$-modules iff corresponding morphism $f^{-1}\mathcal{G}\to\mathcal{F}$ is a morphism of $f^{-1}\mathcal{O}_Y$-modules, so that our maps give an isomorphism $$\operatorname{Hom}_{f^{-1}\mathcal{O}_Y}(f^{-1}\mathcal{G},\mathcal{F}) \cong \operatorname{Hom}_{\mathcal{O}_Y}(\mathcal{G},f_*\mathcal{F}).$$ Next, use the tensor-hom adjunction and the fact that $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_X,\mathcal{F})\cong\mathcal{F}$ to establish that $$\operatorname{Hom}_{f^{-1}\mathcal{O}_Y}(f^{-1}\mathcal{G},\mathcal{F}) \cong \operatorname{Hom}_{f^{-1}\mathcal{O}_Y}(f^{-1}\mathcal{G},\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_X,\mathcal{F})) \cong \\ \cong \operatorname{Hom}_{\mathcal{O}_X}(f^{-1}\mathcal{G}\otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X,\mathcal{F}) \cong \operatorname{Hom}_{\mathcal{O}_X}(f^*\mathcal{G},\mathcal{F}).$$ Tracing through the counit map for each of these adjunctions, one sees that the counit for the adjunction between $f^*$ and $f_*$ is as specified above.