Your analogy can be made rigorous by introducing so-called indefinite and definite sums. The following is presented in more detail and nicely in section 2.6: Finite and infinite calculus in Concrete Mathematics
by R.L. Graham, D.E. Knuth and O. Patashnik.
We start with the difference operator $\Delta$ defined as $\Delta f(x)=f(x+1)-f(x)$ and apply it on the falling factorial $x^{\underline{m}}$:
\begin{align*}
\color{blue}{\Delta\left(x^{\underline{m}}\right)}&=(x+1)^{\underline{m}}-x^{\underline{m}}\\
&=(x+1)x\cdots (x-m+2)\\
&\qquad-x(x-1)\cdots(x-m+1)\\
&=x(x-1)\cdots(x-m+2)\left[(x+1)-(x-m+1)\right]\\
&\color{blue}{=mx^{\underline{m-1}}}\tag{1}
\end{align*}
We observe in (1) a nice analogy between the delta operator $\Delta$ applied to the falling factorial $x^{\underline{m}}$ and the differential operator $D$ applied to the power function $x^m$.
\begin{align*}
Dx^m=mx^{m-1}
\end{align*}
We will use this analogy and start with introducing so-called definite sums: If $g(x)=\Delta f(x)$ we define the definite sum $\sum_{a}^b g(x)\delta x$ as
\begin{align*}
\color{blue}{\sum_{a}^b g(x)\delta x:= f(x)\Big|_a^{b}=f(b)-f(a)}\tag{2}
\end{align*}
Here we mimic definite integrals by recalling that if $g(x)=Df(x)$, then under appropriate conditions we have
\begin{align*}
\int_{a}^b g(x)\,dx=f(x)\Big|_{a}^{b}=f(b)-f(a)
\end{align*}
We see that $\delta$ in (2) plays the role of $d$ and $\Delta$ the role of $D$. Since
\begin{align*}
\color{blue}{\sum_{a\leq k<b}g(k)}
&=\sum_{k=a}^{b-1}g(x)=\sum_{k=a}^{b-1}\Delta f(k)\\
&=\sum_{k=a}^{b-1}\left(f(k+1)-f(k)\right)\\
&\color{blue}{=f(b)-f(a)}\tag{3}
\end{align*}
we have from (2) and (3)
\begin{align*}
\color{blue}{\sum_{a}^{b}g(k)\delta k=\sum_{a\leq k<b}g(k)=\sum_{k=a}^{b-1}g(k)}\tag{4}\\
\end{align*}
Now its time to harvest. We obtain for positive integers $n$ and $r$:
\begin{align*}
\color{blue}{S_2}\color{blue}{=\sum_{k=1}^nk^{\underline{r}}}
&=\frac{1}{r+1}\sum_{k=1}^n\Delta\left(k^{\underline{r+1}}\right)\tag{$\leftarrow$ (1)}\\
&=\frac{1}{r+1}k^{\underline{r+1}}\Big|_{1}^{n+1}\tag{$\leftarrow$ (2) - (4)}\\
&=\frac{1}{r+1}(n+1)^{\underline{r+1}}-\frac{1}{r+1}1^{\underline{r+1}}\\
&\color{blue}{=\frac{1}{r+1}(n+1)^{\underline{r+1}}}
\end{align*}
according to the claim.
In a similar way as above we get
\begin{align*}
\color{blue}{\Delta\left(x^{\overline{m}}\right)=m(x+1)^{\overline{m-1}}}\tag{5}
\end{align*}
and we calculate
\begin{align*}
\color{blue}{S_1}\color{blue}{=\sum_{k=1}^nk^{\overline{r}}}
&=\frac{1}{r+1}\sum_{k=1}^n\Delta\left((k-1)^{\overline{r+1}}\right)\tag{$\leftarrow$ (5)}\\
&=\frac{1}{r+1}\sum_{k=0}^{n-1}\Delta\left(k^{\overline{r+1}}\right)\\
&=\frac{1}{r+1}k^{\overline{r+1}}\Big|_{0}^{n}\tag{$\leftarrow$ (2) - (4)}\\
&\color{blue}{=\frac{1}{r+1}n^{\overline{r+1}}}
\end{align*}
according to the claim.