If $\lim_{n\to\infty} |\alpha_n|=0$ then $\lim_{n\to\infty} |\alpha_n|^{1/n}=0$? I am trying to figure this out.
My attempt, since $\lim_{n\to\infty} |\alpha_n|=0=\lim_{n\to\infty} 1/n^n$, then we have $$ \lim_{n\to\infty} \log|\alpha_n|/n= \lim_{n\to\infty} \log(1/n^n)/n= \lim_{n\to\infty} -n \log(n)/n = -\infty. $$
But I am not sure how we may interchange/switch those limits. As I understand, because $\lim_n |\alpha_n|=0$, the $|\alpha_n|$ must be so close to small numbers like $1/n^n$. Is this limit $\lim_n |\alpha_n|^{1/n}=0$ correct?