I want to prove that $$ F := \int_0^\infty \dfrac{e^{-a \sqrt{x^2 + b^2}} }{\sqrt{x^2 + b^2}} J_\nu (cx) \, dx = I_{\nu/2} \left(\dfrac{b}{2} \left[ \sqrt{a^2 + c^2} - a \right] \right) K_{\nu/2} \left(\dfrac{b}{2} \left[ \sqrt{a^2 + c^2} + a \right] \right), $$ which is (6.637.1) from Gradshteyn and Ryzhik.
The first thing that I have tried is to make the substitution $x = b \sinh \zeta$, so $$ F = \int_0^\infty e^{-ab \cosh \zeta} J_\nu (bc \sinh \zeta) \, d\zeta. $$ Now I introduce $$ J_\nu (r) = \dfrac{(r/2)^\nu}{\sqrt{\pi} \, \Gamma(\nu + 1/2)} \int_0^\pi \cos(r \cos\theta) (\sin \theta) ^{2\nu} \, d\theta, $$ so that \begin{equation} F = \int_0^\pi (\sin \theta) ^{2\nu} \int_0^\infty \dfrac{(bc/2 \sinh \zeta)^\nu}{\sqrt{\pi} \, \Gamma(\nu + 1/2)} e^{-ab \cosh \zeta} \cos(bc \sinh \zeta \cos\theta) \, d\zeta\, d\theta. \label{1}\tag{1} \end{equation} I now want to use the fact that $$ I_\nu (r) = \dfrac{(r/2)^\nu}{\sqrt{\pi} \, \Gamma(\nu + 1/2)} \int_0^\pi \cosh(r \cos\theta) (\sin \theta) ^{2\nu} \, d\theta, $$ and $$ K_\nu (r) = \dfrac{\sqrt{\pi} \, (r/2)^\nu}{\Gamma(\nu + 1/2)} \int_0^\infty e^{-r \cosh\zeta} (\sinh \zeta) ^{2\nu} \, d\zeta, $$ and probably also the facts that $$ \dfrac{b^2c^2}{4} = \left(\dfrac{b}{2} \left[ \sqrt{a^2 + c^2} - a \right] \right) \left(\dfrac{b}{2} \left[ \sqrt{a^2 + c^2} + a \right] \right) $$ and $$ -ab = \left(\dfrac{b}{2} \left[ \sqrt{a^2 + c^2} - a \right] \right) - \left(\dfrac{b}{2} \left[ \sqrt{a^2 + c^2} + a \right] \right) $$ to put \eqref{1} into the desired form, but I am not sure how to treat the crossed term involving $\sinh\zeta \cos\theta$. It seems like I might also have to use contour integration to turn the hyperbolic cosine into the regular cosine. Can anyone help me fill in the details?
$$ \frac{b^{\nu/2}}{a^{\nu/2} 2^{\nu/2} \sqrt{\pi}} \sum_{m=0}^\infty \frac{(-1)^m\Gamma!\left(m+\tfrac{\nu+1}{2}\right)}{m!\Gamma(m+\nu+1)} \left(\frac{b c^2}{2a}\right)^m K_{m+\frac{\nu}{2}}(ab) $$
Not sure if it’s right, but that’s where I landed.
– Martin.s May 19 '25 at 18:58