Let $$I_n=\int_0^\infty e^{-x^n}\,\mathrm dx=\frac1n\Gamma(\tfrac1n).$$ Then, we have $$I_2=\frac1{2\sqrt2}\sqrt{2\pi}$$ $$I_4=\frac1{4}\sqrt{\sqrt{2\pi}}\sqrt{2\varpi}$$ where $\pi=2\int_0^1\frac{\mathrm dx}{\sqrt{1-x^2}}=\Gamma\left(\tfrac12\right)^2$ is the circle constant and $\varpi=2\int_0^1\frac{\mathrm dx}{\sqrt{1-x^4}}=\frac{\Gamma\left(\tfrac14\right)^2}{2\sqrt{2\pi}}$ is the lemniscate constant.
Do we have the following expresion for $I_6$?: $$c\sqrt{\sqrt{\sqrt{2\pi}}}\sqrt{\sqrt{2\varpi}}\sqrt{2s}$$ where $s=2\int_0^1\frac{\mathrm dx}{\sqrt{1-x^6}}=\frac{\Gamma\left(\tfrac16\right)\Gamma\left(\tfrac13\right)}{2\sqrt{3\pi}}$ and $c$ is an algebraic integer.