2

I have obtained, empirically, a very good and easy to express approximation of the Riemann $\zeta$ function inside the critical strip. The approximation is as follows (I give two versions, the second one being more complex, but also better by an order of magnitude in the constants involved):

$$A_1(\sigma+it)=\sum_{n=1}^{\lfloor t\rfloor}\frac{1}{n^{\sigma+it}}$$

$$A_2(\sigma+it)=\sum_{n=1}^{\lfloor t-1\rfloor}\frac{1}{n^{\sigma+it}}+\frac{1}{2}\sum_{n=\lfloor t\rfloor}^{\lceil t+1\rceil}\frac{1}{n^{\sigma+it}}$$

What surprised me is that this seems to be significantly better, computationally, than using the usual cutoff for the approximate functional equation of $t/(2\pi)$. In any case, I want to prove that the error of this approximation is small, of order $1/t^{\epsilon}$ for some $\epsilon>0$, inside the critical strip. Here is how I proceed (the idea given by @daniel’s answer in this post in this forum: How are Zeta function values calculated from within the Critical Strip?). The following is my not so good attempt at showing that the error, for $A_1,$ is small. Empirically, the error decreases as $t \to\infty$.

Using partial summation to obtain the first equality below, we have, for $\sigma>1$, that \begin{eqnarray} \sum_{n=1}^{\infty}\frac{1}{n^s}&=&s\int_1^{\infty}\frac{\lfloor x\rfloor}{x^{1+s}}dx=s \int_1^{\infty}\frac{ x}{x^{1+s}}dx - s\int_1^{\infty}\frac{x-\lfloor x\rfloor} {x^{1+s}}dx\nonumber\\ &=&\frac{s}{s-1} -s\int_1^{\infty}\frac{x-\lfloor x\rfloor} {x^{1+s}}dx\nonumber \end{eqnarray} so that \begin{eqnarray} \zeta(s)&=&\frac{s}{s-1} -s\int_1^{\infty}\frac{x-\lfloor x\rfloor} {x^{1+s}}dx\quad (1)\label{exact} \end{eqnarray} with the integral converging for $\sigma>0$. On the other hand, from Euler's summation formula (see Jameson, The Prime Number Theorem, Proposition 1.4.6, P. 22) we get \begin{eqnarray*} \sum_{n=1}^{\lfloor t\rfloor}\frac{1}{n^s}&=&1+ \int_1^{t}\frac{ 1}{x^{s}}dx -s\int_1^{t}\frac{x-\lfloor x\rfloor} {x^{1+s}}dx=1+\frac{t^s-t}{t^s (s-1)} -s \int_1^{t}\frac{x-\lfloor x\rfloor} {x^{1+s}}dx \nonumber \end{eqnarray*} so that \begin{eqnarray} \sum_{n=1}^{\lfloor t\rfloor}\frac{1}{n^s}&=&1+\frac{1}{s-1}-\frac{t^{1-s}}{s-1}-s\int_1^{t}\frac{x-\lfloor x\rfloor} {x^{1+s}}dx\quad (2)\label{inexact} \end{eqnarray} Moving the LHS in (2) to the RHS and then subtracting the resulting equality from (1) we get \begin{eqnarray*} \zeta(s)&=& \sum_{n=1}^{\lfloor t\rfloor}\frac{1}{n^s}+ \frac{t^{1-s}}{s-1}-s\int_t^{\infty}\frac{x-\lfloor x\rfloor} {x^{1+s}}dx\quad (3) \end{eqnarray*} Thus, we have $$\left|\frac{t^{1-s}}{s-1}\right|=\left|\frac{t^{1-\sigma-it}}{\sigma-1+it}\right|=\frac{1}{t^{\sigma}}+o(1/t^{1/\sigma})$$ and $$\left|\int_t^{\infty}\frac{x-\lfloor x\rfloor} {x^{1+s}}dx\right|=O(1/t^{\sigma}).$$

My problem is, I don’t know how to get rid of that $s$ factor multiplied with the integral in (3). Here are some pictures of the approximation $A_2$ vs $\zeta$, with the approximation by $A_1$ visibly as good, although not quite as good as $A_2$. Hopefully someone can help prove the error is small.

<span class=$\zeta$ and the approximation $A_2$ " />

EGME
  • 457
  • 1
    not sure what you ask here as Theorem 4.11 in Titchmarsh solves this completely - and incidentally usually we do not cutoff at $t/(2\pi)$ since we need the sum to be actually on a larger ranger $Ct/(2\pi), C>1$ because the first derivative in $x$ of $t\log x/(2\pi)$ needs to be strictly less than some fixed $\delta<1$ (here $\delta=1/C$; maybe you are confusing this approximation with one Dirichlet polynomial of size $t$ with the AFE approximation with two Dirichlet polynomials of size $\sqrt t$ each where indeed $t/(2\pi)$ plays an important role – Conrad May 06 '25 at 14:34
  • You may be interested by this answer and links as this – Raymond Manzoni May 06 '25 at 19:21
  • @Raymond Manzoni : Thank you. I will put this to the test as soon as I get a chance (tomorrow most likely). Somehow, I think the simple approximation above might work better. It all depends on the term that is outside the series in your post. The series by itself is certainly not as good as if you take the values of $n$ all the way up to $\lfloor t \rfloor$, I tried that. – EGME May 06 '25 at 20:20
  • @EGME: My second link was obtained in $2016$. For $\displaystyle\zeta\left(s\right)=\sum_{k=1}^N\frac{1}{k^s}-\frac {\mathcal{R}_N(d)}{2,N^s};$ with $\displaystyle N:=\left[\frac t{e}\right],\ 0<e<2\pi;$ and $;d:=s-e,N,i;;$ I obtained the asymptotic expansion of $,\mathcal{R}_N(d),$ in $2023$ (unpublished). This is somewhat related to the Euler-Maclaurin expansion of Hurwitz zeta. Excellent continuation anyway! – Raymond Manzoni May 06 '25 at 21:41

2 Answers2

3

A desired approximation can be obtained by starting with the Abel-Plana formula instead. Suppose $x\ge2$ is not an integer. Then for $s=\sigma+it$, $\sigma>1$, there is

\begin{aligned} \sum_{n>x}{1\over n^s} &=\int_x^{+\infty}u^{-s}\mathrm du+\int_x^{x+i\infty}{u^{-s}\over e^{-2\pi iu}-1}\mathrm du+\int_x^{x-i\infty}{u^{-s}\over e^{2\pi iu}-1}\mathrm du \\ &={x^{1-s}\over s-1}+\int_x^{x+i\infty}{u^{-s}\over e^{-2\pi iu}-1}\mathrm du+\int_x^{x-i\infty}{u^{-s}\over e^{2\pi iu}-1}\mathrm du. \end{aligned}

As the right and side extends to an analytic function on $\mathbb C\setminus\{1\}$, we see that

\begin{aligned} E(s) &:=\zeta(s)-\left(\sum_{n<x}{1\over n^s}+{x^{1-s}\over s-1}\right) \\ &=\int_x^{x+i\infty}{u^{-s}\over e^{-2\pi iu}-1}\mathrm du+\int_x^{x-i\infty}{u^{-s}\over e^{2\pi iu}-1}\mathrm du \end{aligned} is valid for all $s$. Due to symmetry, we only lay out the details for treating $\int_x^{x+i\infty}$.

Let $u=x+iv$. Then \begin{aligned} \left|\int_x^{x+i\infty}\right| &=\left|\int_0^{+\infty}{e^{-s\log(x+iv)}\over e^{2\pi v-2\pi ix}-1}\mathrm dv\right|\le\int_0^{+\infty}{e^{-\sigma\log|x+iv|+t\arg(x+iv)}\over e^{2\pi v}-1}\mathrm dv \\ &\le x^{-\sigma}\int_0^{+\infty}{e^{|t|v/x}\over e^{2\pi v}-1}\mathrm dv\le2x^{-\sigma}\int_0^{+\infty}e^{-\left(2\pi-{|t|\over x}\right)v}\mathrm dv={2x^{-\sigma}\over2\pi-{|t|\over x}}. \end{aligned}

Conclusively, one has $$ |E(s)|\le{4x^{-\sigma}\over2\pi-{|t|\over x}}. $$ In particular, setting $x=|t|$ gives $E(s)=O(|t|^{-\sigma})$. Observe that at the same time $x^{1-s}/(s-1)=O(|t|^{-\sigma})$, so $$ \zeta(\sigma+it)=\sum_{n\le|t|}{1\over n^{\sigma+it}}+O(|t|^{-\sigma}). $$

TravorLZH
  • 7,786
  • You mean, the integrals on the RHS converge for $\sigma>0$ in your first equation, right? I ask because the definining series for $\zeta$ does not converge for $\sigma\le 1$, yet there is an analytic continuation to the entire plane minus $\sigma=1$. – EGME May 08 '25 at 09:08
  • Can you elaborate how the actual AP formula is applied here? Thanks! – EGME May 08 '25 at 09:20
  • The Abel-Plana formula basically states that when $a,b$ are not integers and $f(z)$ is some function analytic in some region containing $a\le\Re(z)\le b$ satisfying some decay conditions at infinity, then $$\sum_{a<n<b}f(n)=\int_a^bf(x)\mathrm dx+\left(\int_a^{a+i\infty}-\int_b^{b+i\infty}\right){f(z)\over e^{-2\pi iz}-1}+\left(\int_a^{a-i\infty}-\int_b^{b-i\infty}\right){f(z)\over e^{2\pi iz}-1}.$$ – TravorLZH May 08 '25 at 15:09
  • 1
    You can find more in §3.1 of Le calcul des résidus et ses applications à la théorie des fonctions by Lindelöf. – TravorLZH May 08 '25 at 15:11
3

As noted in comments, using the Fourier series of the sawtooth function $\psi(x)=x-[x]-1/2$ , we can give a direct proof that for $s=\sigma+it, 0<\sigma<A, t \ge 1$ and $y\ge Ct/(2\pi), C>1$ we have $$\left|s\int_y^{\infty}\frac{x-\lfloor x\rfloor} {x^{1+s}}dx\right|=O_{A,C}(1/t^{\sigma})$$

We will fix $C>0, A>0$ now and just use $O$ though the implied dependencies will be quite clear.

We first note that $$\left|s\int_y^{\infty}\frac{1} {2x^{1+s}}dx\right|= \left|\frac{1}{2y^s}\right|=\frac{1}{2y^{\sigma}}$$ so up to allowable error we need to prove that $$\left|s\int_y^{\infty}\frac{\psi(x)} {x^{1+s}}dx\right|=O(1/t^{\sigma})$$

We have $$\psi(x)=-\sum_{k=1}^{\infty}\frac{\sin 2\pi kx}{k\pi}$$ with uniformly bounded partial sums so on any finite interval we can interchange summation and integration as long as we integrate against a continuous function say, so fixing a large $N>0$ we have $$s\int_y^N\frac{\psi(x)} {x^{1+s}}dx=C_1\sum_{k=1}^{\infty}\frac{s}{k}\int_y^N(e^{i(2\pi kx-t\log x)}-e^{i(-2\pi kx-t\log x)})x^{-1-\sigma}dx$$

Here $C_1$ is an absolute constant. We notice that since $x \ge y \ge Ct/(2\pi)$ we have $\frac{d}{dx}(2\pi kx-t\log x)=2\pi k-t/x \ge 2\pi (k-1)+\frac{(C-1)t}{x}> 2\pi(k-1), k \ge 2$ and also $2\pi -t/x \ge 2\pi (1-1/C)>0, k=1 $, so integrating by parts we get $$\int_y^N e^{i(2\pi kx-t\log x)}x^{-1-\sigma}dx=e^{i(2\pi kx-t\log x)}\frac{x^{-\sigma-1}}{(2\pi k-t/x)i}|_{y}^N+$$ $$+\int_y^N e^{i(2\pi kx-t\log x)}\frac{d}{dx}\frac{x^{-\sigma-1}}{(2\pi k-t/x)i}dx$$

Now for $k \ge 2$ the evaluation is clearly $O(\frac{y^{-\sigma}}{ky})$ so multiplying by $s/k$ and summing we get an $O(y^{-\sigma}\frac{|s|}{y}\sum_{k=2}k^{-2})$ hence using $|s|=O_A(t)$ and $2\pi y \ge Ct$ we clearly get the required $O(t^{-\sigma})$

For $k=1$ the evaluation is $O(\frac{y^{-\sigma}}{y(2\pi(1-1/C))}$) and again we are good.

For the integral term, we take absolute values and note that $-\frac{d}{dx}\frac{x^{-\sigma-1}}{2\pi k-t/x}>0$ so $$|\int_y^N e^{i(2\pi kx-t\log x)}\frac{d}{dx}\frac{x^{-\sigma-1}}{(2\pi k-t/x)i}dx|\le -\int_y^N \frac{d}{dx}\frac{x^{-\sigma-1}}{2\pi k-t/x}dx$$ which gives back the evaluation term above and the estimates we used show we again get $O(t^{-\sigma})$.

For the other term with $e^{i(-2\pi kx-t\log x)}$ we notice that the (absolute value of the) derivative is $2\pi k+t/x >2\pi k$ so we repeat the procedure noting that $x^{\sigma+1}(2\pi k+t/x)=2\pi kx^{\sigma+1}+tx^{\sigma}$ is still increasing since $\sigma >0, t>0$, while we do not need to separate in cases anymore.

Hence letting $N \to \infty$ our result is proved - actually we proved more, namely that for $s=\sigma+it, \sigma>0$ and $y\ge Ct/(2\pi), C>1$ we have $$\left|s\int_y^{\infty}\frac{x-\lfloor x\rfloor} {x^{1+s}}dx\right|=O_{C}(\frac{|s|}{y}\frac{1}{y^{\sigma}})+\frac{1}{2y^{\sigma}}$$

Conrad
  • 31,769