Multiplied by the conjugate, the integrand becomes
$$f(x)=\frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{2 x^{3/2}}$$
$$f(x)=\frac{1}{4 \sqrt{\pi }}\sum_{n=0}^\infty\left(1-(-1)^n\right)\,\frac{\Gamma
\left(n-\frac{1}{2}\right)}{\Gamma
(n+1)}\,x^{2 n-\frac{3}{2}}$$
$$\int f(x)\,dx=\frac{1}{2 \sqrt{\pi }}\sum_{n=0}^\infty\left(1-(-1)^n\right)\,\frac{\Gamma
\left(n-\frac{1}{2}\right)}{(4n-1)\,\Gamma
(n+1)}\,x^{2 n-\frac{1}{2}}$$
and the antiderivative is given in terms of two Gaussian hypergeometric functions
$$\frac 1{\sqrt x}\Bigg(\,
_2F_1\left(-\frac{1}{2},-\frac{1}{4};\frac{3}{4
};x^2\right)-\,
_2F_1\left(-\frac{1}{2},-\frac{1}{4};\frac{3}{4
};-x^2\right) \Bigg)$$ which make the definite integral
$$ \frac{2 \left(\sqrt{2}-1\right) \pi ^{3/2}}
{\Gamma\left(\frac{1}{4}\right)^2} $$
Edit
Starting from @Svyatoslav's approach
$$I(t)=\frac 1{\sqrt 2} \int \left(\sqrt{\cosh (t)}-\sqrt{\sinh(t)}\right) \,dt$$ using elliptic integrals
$$I(t)=-\sqrt{2} \left(\sqrt{i}
E\left(\left.\frac{1}{4} (\pi -2 i
t)\right|2\right)+i
E\left(\left.\frac{i
t}{2}\right|2\right)\right)$$
$$I(0)=-\frac{(1+i) \left(2
E\left(\frac{1}{2}\right)-K\left(\frac
{1}{2}\right)\right)}{\sqrt{2}}=-\frac{(1+i)\, \Gamma\left(\frac{3}{4}\right)^2}{\sqrt{2 \pi }}$$ and when $t\to \infty$
$$I(t)\to -\frac{\left(1+(-1)^{3/4}\right) \Gamma
\left(\frac{3}{4}\right)^2}{\sqrt{\pi }}$$ and then the result
$$\frac{\sqrt{2}-1}{\sqrt{\pi }}\, \Gamma \left(\frac{3}{4}\right)^2$$