Assuming a hyperbola given in cartesian form
$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0.$$
Coming from the nice formulas for the ellipse, what are the formulas for the parameters $a,b$ in its parametric form
$$x(t) = x_c + a \cos(\phi)\cosh(t) - b \sin(\phi)\sinh(t)\\ y(t) = y_c + a \sin(\phi)\cosh(t) + b \cos(\phi)\sinh(t), t \in \mathbb{R},$$ where $\phi = \text{atan2}(-B, C-A)/2$ and center coordinates
$$x_c = \frac{B E-2 C D}{4 A C -B^2}$$ $$y_c = \frac{B D-2 A E}{4 A C -B^2}?$$
Thanks in advance!